These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12519786)

  • 41. RPA-like proteins mediate yeast telomere function.
    Gao H; Cervantes RB; Mandell EK; Otero JH; Lundblad V
    Nat Struct Mol Biol; 2007 Mar; 14(3):208-14. PubMed ID: 17293872
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative amplification of single-stranded DNA (QAOS) demonstrates that cdc13-1 mutants generate ssDNA in a telomere to centromere direction.
    Booth C; Griffith E; Brady G; Lydall D
    Nucleic Acids Res; 2001 Nov; 29(21):4414-22. PubMed ID: 11691929
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Est1p as a cell cycle-regulated activator of telomere-bound telomerase.
    Taggart AK; Teng SC; Zakian VA
    Science; 2002 Aug; 297(5583):1023-6. PubMed ID: 12169735
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rad6-Bre1 mediated histone H2Bub1 protects uncapped telomeres from exonuclease Exo1 in Saccharomyces cerevisiae.
    Wu Z; He MH; Zhang LL; Liu J; Zhang QD; Zhou JQ
    DNA Repair (Amst); 2018 Dec; 72():64-76. PubMed ID: 30254011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly sequence-specific binding is retained within the DNA-binding domain of the Saccharomyces castellii Cdc13 telomere-binding protein.
    Rhodin Edsö J; Tati R; Cohn M
    FEMS Yeast Res; 2008 Dec; 8(8):1289-302. PubMed ID: 18759744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants.
    Jia X; Weinert T; Lydall D
    Genetics; 2004 Feb; 166(2):753-64. PubMed ID: 15020465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vertebrate POT1 restricts G-overhang length and prevents activation of a telomeric DNA damage checkpoint but is dispensable for overhang protection.
    Churikov D; Wei C; Price CM
    Mol Cell Biol; 2006 Sep; 26(18):6971-82. PubMed ID: 16943437
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1.
    Tsolou A; Lydall D
    DNA Repair (Amst); 2007 Nov; 6(11):1607-17. PubMed ID: 17618841
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probing the mechanism of recognition of ssDNA by the Cdc13-DBD.
    Eldridge AM; Wuttke DS
    Nucleic Acids Res; 2008 Mar; 36(5):1624-33. PubMed ID: 18250086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase.
    Shen ZJ; Hsu PH; Su YT; Yang CW; Kao L; Tseng SF; Tsai MD; Teng SC
    Nat Commun; 2014 Nov; 5():5312. PubMed ID: 25387524
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hsk1-Dfp1/Him1, the Cdc7-Dbf4 kinase in Schizosaccharomyces pombe, associates with Swi1, a component of the replication fork protection complex.
    Matsumoto S; Ogino K; Noguchi E; Russell P; Masai H
    J Biol Chem; 2005 Dec; 280(52):42536-42. PubMed ID: 16263721
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear import of Cdc13 limits chromosomal capping.
    Mersaoui SY; Bonnell E; Wellinger RJ
    Nucleic Acids Res; 2018 Apr; 46(6):2975-2989. PubMed ID: 29432594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres.
    Tsukamoto Y; Taggart AK; Zakian VA
    Curr Biol; 2001 Sep; 11(17):1328-35. PubMed ID: 11553325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromosome end protection plasticity revealed by Stn1p and Ten1p bypass of Cdc13p.
    Petreaca RC; Chiu HC; Eckelhoefer HA; Chuang C; Xu L; Nugent CI
    Nat Cell Biol; 2006 Jul; 8(7):748-55. PubMed ID: 16767082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and characterization of Stn1p, a single-stranded telomeric DNA binding protein.
    Qian W; Fu XH; Zhou JQ
    Protein Expr Purif; 2010 Oct; 73(2):107-12. PubMed ID: 20576529
    [TBL] [Abstract][Full Text] [Related]  

  • 57. 1H, 13C and 15N resonance assignments of the DNA-binding domain of the essential protein Cdc13 complexed with single-stranded telomeric DNA.
    Mitton-Fry RM; Wuttke DS
    J Biomol NMR; 2002 Apr; 22(4):379-80. PubMed ID: 12018489
    [No Abstract]   [Full Text] [Related]  

  • 58. A class of single-stranded telomeric DNA-binding proteins required for Rap1p localization in yeast nuclei.
    Konkel LM; Enomoto S; Chamberlain EM; McCune-Zierath P; Iyadurai SJ; Berman J
    Proc Natl Acad Sci U S A; 1995 Jun; 92(12):5558-62. PubMed ID: 7777547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta.
    Diede SJ; Gottschling DE
    Cell; 1999 Dec; 99(7):723-33. PubMed ID: 10619426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Either Rap1 or Cdc13 can protect telomeric single-stranded 3' overhangs from degradation in vitro.
    Runnberg R; Narayanan S; Itriago H; Cohn M
    Sci Rep; 2019 Dec; 9(1):19181. PubMed ID: 31844093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.