BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 12519917)

  • 21. Identification and reverse genetic analysis of mitochondrial processing peptidase and the core protein of the cytochrome bc1 complex of Caenorhabditis elegans, a model parasitic nematode.
    Nomura H; Athauda SB; Wada H; Maruyama Y; Takahashi K; Inoue H
    J Biochem; 2006 Jun; 139(6):967-79. PubMed ID: 16788047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits.
    Gnipová A; Panicucci B; Paris Z; Verner Z; Horváth A; Lukeš J; Zíková A
    Mol Biochem Parasitol; 2012 Aug; 184(2):90-8. PubMed ID: 22569586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composition of the mitochondrial electron transport chain in acanthamoeba castellanii: structural and evolutionary insights.
    Gawryluk RM; Chisholm KA; Pinto DM; Gray MW
    Biochim Biophys Acta; 2012 Nov; 1817(11):2027-37. PubMed ID: 22709906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH2 oxidation and large-scale domain movement in the bc1 complex.
    Darrouzet E; Daldal F
    Biochemistry; 2003 Feb; 42(6):1499-507. PubMed ID: 12578362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial NADH:ubiquinone oxidoreductase (complex I) in eukaryotes: a highly conserved subunit composition highlighted by mining of protein databases.
    Cardol P
    Biochim Biophys Acta; 2011 Nov; 1807(11):1390-7. PubMed ID: 21749854
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing the evolution of a large protein complex in the eukaryotes, NADH:ubiquinone oxidoreductase (Complex I).
    Gabaldón T; Rainey D; Huynen MA
    J Mol Biol; 2005 May; 348(4):857-70. PubMed ID: 15843018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.
    He D; Fu CJ; Baldauf SL
    Mol Biol Evol; 2016 Jan; 33(1):122-33. PubMed ID: 26412445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids.
    Jacob Y; Seif E; Paquet PO; Lang BF
    RNA; 2004 Apr; 10(4):605-14. PubMed ID: 15037770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and sequence analysis of the gene encoding 19-kD subunit of Complex I from Dunaliella salina.
    Liu Y; Qiao DR; Zheng HB; Dai XL; Bai LH; Zeng J; Cao Y
    Mol Biol Rep; 2008 Sep; 35(3):397-403. PubMed ID: 17530440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions between the cytochrome b, cytochrome c1, and Fe-S protein subunits at the ubihydroquinone oxidation site of the bc1 complex of Rhodobacter capsulatus.
    Saribaş AS; Valkova-Valchanova M; Tokito MK; Zhang Z; Berry EA; Daldal F
    Biochemistry; 1998 Jun; 37(22):8105-14. PubMed ID: 9609705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superoxide generation by complex III: from mechanistic rationales to functional consequences.
    Bleier L; Dröse S
    Biochim Biophys Acta; 2013; 1827(11-12):1320-31. PubMed ID: 23269318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III.
    McKenzie M; Chiotis M; Pinkert CA; Trounce IA
    Mol Biol Evol; 2003 Jul; 20(7):1117-24. PubMed ID: 12777531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A structural analysis of the transient interaction between the cytochrome bc1 complex and its substrate cytochrome c.
    Nyola A; Hunte C
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):981-5. PubMed ID: 18793174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome.
    Gray MW; Burger G; Derelle R; Klimeš V; Leger MM; Sarrasin M; Vlček Č; Roger AJ; Eliáš M; Lang BF
    BMC Biol; 2020 Mar; 18(1):22. PubMed ID: 32122349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of amino acid residues essential for reconstitutive activity of subunit IV of the cytochrome bc1 complex from Rhodobacter sphaeroides.
    Tso SC; Yin Y; Yu CA; Yu L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1561-7. PubMed ID: 16890186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural composition of alternative complex III: variations on the same theme.
    Refojo PN; Ribeiro MA; Calisto F; Teixeira M; Pereira MM
    Biochim Biophys Acta; 2013; 1827(11-12):1378-82. PubMed ID: 23313414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple Rieske genes in prokaryotes: exchangeable Rieske subunits in the cytochrome bc-complex of Rubrivivax gelatinosus.
    Ouchane S; Nitschke W; Bianco P; Vermeglio A; Astier C
    Mol Microbiol; 2005 Jul; 57(1):261-75. PubMed ID: 15948965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function of cytochrome bc complexes.
    Berry EA; Guergova-Kuras M; Huang LS; Crofts AR
    Annu Rev Biochem; 2000; 69():1005-75. PubMed ID: 10966481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease.
    Lloyd RE; McGeehan JE
    PLoS One; 2013; 8(7):e69003. PubMed ID: 23874847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod.
    Willett CS; Burton RS
    Mol Biol Evol; 2004 Mar; 21(3):443-53. PubMed ID: 14660687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.