BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 12520371)

  • 1. Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA.
    de Assis LJ; Silva LP; Bayram O; Dowling P; Kniemeyer O; Krüger T; Brakhage AA; Chen Y; Dong L; Tan K; Wong KH; Ries LNA; Goldman GH
    mBio; 2021 Jan; 12(1):. PubMed ID: 33402538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wide-domain carbon catabolite repressor CreA indirectly controls expression of the Aspergillus nidulans xlnB gene, encoding the acidic endo-beta-(1,4)-xylanase X(24).
    Orejas M; MacCabe AP; Pérez-González JA; Kumar S; Ramón D
    J Bacteriol; 2001 Mar; 183(5):1517-23. PubMed ID: 11160081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preassembled Cas9 Ribonucleoprotein-Mediated Gene Deletion Identifies the Carbon Catabolite Repressor and Its Target Genes in Coprinopsis cinerea.
    Pareek M; Hegedüs B; Hou Z; Csernetics Á; Wu H; Virágh M; Sahu N; Liu XB; Nagy L
    Appl Environ Microbiol; 2022 Dec; 88(23):e0094022. PubMed ID: 36374019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation.
    Portnoy T; Margeot A; Linke R; Atanasova L; Fekete E; Sándor E; Hartl L; Karaffa L; Druzhinina IS; Seiboth B; Le Crom S; Kubicek CP
    BMC Genomics; 2011 May; 12():269. PubMed ID: 21619626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans.
    Freitas JS; Silva EM; Leal J; Gras DE; Martinez-Rossi NM; Dos Santos LD; Palma MS; Rossi A
    Cell Stress Chaperones; 2011 Sep; 16(5):565-72. PubMed ID: 21553327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity glucose transport in Aspergillus nidulans is mediated by the products of two related but differentially expressed genes.
    Forment JV; Flipphi M; Ventura L; González R; Ramón D; Maccabe AP
    PLoS One; 2014; 9(4):e94662. PubMed ID: 24751997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional control of gluconeogenesis in Aspergillus nidulans.
    Hynes MJ; Szewczyk E; Murray SL; Suzuki Y; Davis MA; Sealy-Lewis HM
    Genetics; 2007 May; 176(1):139-50. PubMed ID: 17339216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the transcriptional responses of
    Picazo I; Etxebeste O; Requena E; Garzia A; Espeso EA
    Microb Genom; 2020 Aug; 6(8):. PubMed ID: 32735212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Transcriptomic and Phosphoproteomic Analysis During Cell Wall Stress in
    Chelius C; Huso W; Reese S; Doan A; Lincoln S; Lawson K; Tran B; Purohit R; Glaros T; Srivastava R; Harris SD; Marten MR
    Mol Cell Proteomics; 2020 Aug; 19(8):1310-1329. PubMed ID: 32430394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological involvement in pH signaling of Vps24-mediated recruitment of Aspergillus PalB cysteine protease to ESCRT-III.
    Rodríguez-Galán O; Galindo A; Hervás-Aguilar A; Arst HN; Peñalva MA
    J Biol Chem; 2009 Feb; 284(7):4404-12. PubMed ID: 19056728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source.
    Martins I; Hartmann DO; Alves PC; Martins C; Garcia H; Leclercq CC; Ferreira R; He J; Renaut J; Becker JD; Silva Pereira C
    BMC Genomics; 2014 Jul; 15():613. PubMed ID: 25043916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconnections between the Cation/Alkaline pH-Responsive Slt and the Ambient pH Response of PacC/Pal Pathways in
    Picazo I; Espeso EA
    Cells; 2024 Apr; 13(7):. PubMed ID: 38607089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the activation of alkaline pH response transcription factor PacC in Aspergillus nidulans: involvement of a negative feedback loop.
    Ke R; Haynes K; Stark J
    J Theor Biol; 2013 Jun; 326():11-20. PubMed ID: 23458440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total transcriptome response for tyrosol exposure in Aspergillus nidulans.
    Jakab Á; Csillag K; Antal K; Boczonádi I; Kovács R; Pócsi I; Emri T
    Fungal Biol; 2024 Apr; 128(2):1664-1674. PubMed ID: 38575239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liamocin biosynthesis is induced by an autogenous host acid activation in Aureobasidium melanogenum.
    Zhang M; Wei X; Wang P; Chi Z; Liu GL; Chi ZM
    Biotechnol J; 2024 Jan; 19(1):e2200440. PubMed ID: 37740661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-wall-degrading enzymes produced in vitro and in vivo by
    Xue CY; Zhou RJ; Li YJ; Xiao D; Fu JF
    PeerJ; 2018; 6():e5580. PubMed ID: 30202660
    [No Abstract]   [Full Text] [Related]  

  • 17. Review of fungal chitinases.
    Duo-Chuan L
    Mycopathologia; 2006 Jun; 161(6):345-60. PubMed ID: 16761182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and pH modulate the expression of the fungal glucose repressor encoding genes.
    Vautard-Mey G; Fèvre M
    Curr Microbiol; 2003 Feb; 46(2):146-50. PubMed ID: 12520371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription analysis using high-density micro-arrays of Aspergillus nidulans wild-type and creA mutant during growth on glucose or ethanol.
    Mogensen J; Nielsen HB; Hofmann G; Nielsen J
    Fungal Genet Biol; 2006 Aug; 43(8):593-603. PubMed ID: 16698295
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.