These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12520412)

  • 41. Visual receptive fields of neurons in primary visual cortex (V1) move in space with the eye movements of fixation.
    Gur M; Snodderly DM
    Vision Res; 1997 Feb; 37(3):257-65. PubMed ID: 9135859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Slow and saccadic eye movements evoked by microstimulation in the supplementary eye field of the cebus monkey.
    Tian JR; Lynch JC
    J Neurophysiol; 1995 Nov; 74(5):2204-10. PubMed ID: 8592211
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrical induction of vision.
    Tehovnik EJ; Slocum WM
    Neurosci Biobehav Rev; 2013 Jun; 37(5):803-18. PubMed ID: 23535445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated.
    Schiller PH; Slocum WM; Kwak MC; Kendall GL; Tehovnik EJ
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17809-14. PubMed ID: 21987821
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cortical inhibitory circuits in eye-movement generation.
    Schiller PH; Tehovnik EJ
    Eur J Neurosci; 2003 Dec; 18(11):3127-33. PubMed ID: 14656309
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional degradation of the primary visual cortex during early senescence in rhesus monkeys.
    Fu Y; Yu S; Ma Y; Wang Y; Zhou Y
    Cereb Cortex; 2013 Dec; 23(12):2923-31. PubMed ID: 22941715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Depth-dependent detection of microampere currents delivered to monkey V1.
    Tehovnik EJ; Slocum WM
    Eur J Neurosci; 2009 Apr; 29(7):1477-89. PubMed ID: 19519630
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search.
    Mirpour K; Ong WS; Bisley JW
    J Neurophysiol; 2010 Dec; 104(6):3021-8. PubMed ID: 20861428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intracortical microstimulation of supplementary eye field impairs ability of monkeys to make serially ordered saccades.
    Berdyyeva TK; Olson CR
    J Neurophysiol; 2014 Apr; 111(8):1529-40. PubMed ID: 24453278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Saccade modulation by optical and electrical stimulation in the macaque frontal eye field.
    Ohayon S; Grimaldi P; Schweers N; Tsao DY
    J Neurosci; 2013 Oct; 33(42):16684-97. PubMed ID: 24133271
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frontal non-invasive neurostimulation modulates antisaccade preparation in non-human primates.
    Valero-Cabre A; Wattiez N; Monfort M; François C; Rivaud-Péchoux S; Gaymard B; Pouget P
    PLoS One; 2012; 7(6):e38674. PubMed ID: 22701691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Saccadic eye movements evoked by optogenetic activation of primate V1.
    Jazayeri M; Lindbloom-Brown Z; Horwitz GD
    Nat Neurosci; 2012 Oct; 15(10):1368-70. PubMed ID: 22941109
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dead zone for express saccades.
    Weber H; Aiple F; Fischer B; Latanov A
    Exp Brain Res; 1992; 89(1):214-22. PubMed ID: 1601099
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical Microstimulation of Visual Cerebral Cortex Elevates Psychophysical Detection Thresholds.
    Cone JJ; Ni AM; Ghose K; Maunsell JHR
    eNeuro; 2018; 5(5):. PubMed ID: 30406199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship between change detection and pre-change [corrected] activity in visual area V1.
    Landman R; Spekreijse H; Lamme VA
    Neuroreport; 2004 Oct; 15(14):2211-4. PubMed ID: 15371735
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transcranial magnetic stimulation. Which part of the current waveform causes the stimulation?
    Corthout E; Barker AT; Cowey A
    Exp Brain Res; 2001 Nov; 141(1):128-32. PubMed ID: 11685417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortical image density determines the probability of target discovery during active search.
    Motter BC; Holsapple JW
    Vision Res; 2000; 40(10-12):1311-22. PubMed ID: 10788642
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Saccadic selection and crowding in visual search: stronger lateral masking leads to shorter search times.
    de Vries JP; Hooge IT; Wiering MA; Verstraten FA
    Exp Brain Res; 2011 May; 211(1):119-31. PubMed ID: 21484396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disjunctive eye movement evoked by microstimulation in an extrastriate cortical area of the cat.
    Toda H; Takagi M; Yoshizawa T; Bando T
    Neurosci Res; 1991 Oct; 12(1):300-6. PubMed ID: 1660990
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Time-variant processing in V1: from microscopic (single cell) to mesoscopic (population) levels.
    Dinse HR; Jancke D
    Trends Neurosci; 2001 Apr; 24(4):203-5. PubMed ID: 11334018
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.