BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1252073)

  • 1. Interaction of the low molecular weight form of elongation factor 1 with guanine nucleotides and aminoacyl-tRNA.
    Nagata S; Iwasaki K; Kaziro Y
    Arch Biochem Biophys; 1976 Jan; 172(1):168-77. PubMed ID: 1252073
    [No Abstract]   [Full Text] [Related]  

  • 2. Formation of aminoacyl-tRNA-guanulul-5'-methylene diphosphonate-elongation factor complex.
    Lee JC; Roach MC
    Biochem Biophys Res Commun; 1975 Apr; 63(4):864-9. PubMed ID: 1093548
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of guanine nucleotides in the interaction between aminoacyl-tRNA and elongation factor 1 of Artemia salina.
    Roobol K; Möller W
    Eur J Biochem; 1978 Oct; 90(3):471-7. PubMed ID: 251131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of an elongation factor functionally analogous to bacterial elongation factor Ts from embryos of Artemia salina.
    Slobin LI; Möller W
    Eur J Biochem; 1978 Mar; 84(1):69-77. PubMed ID: 648520
    [No Abstract]   [Full Text] [Related]  

  • 5. Interactions of the heavy and light forms of elongation factor I with guanine nucleotides and aminoacyl-tRNA.
    Legocki AB; Redfield B; Weissbach H
    Arch Biochem Biophys; 1974 Apr; 161(2):709-12. PubMed ID: 4839057
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional identity of the monomeric and multiple forms of elongation-factor 1 from Krebs-II mouse ascites-tumor cells.
    Grasmuk H; Nolan RD; Drews J
    Eur J Biochem; 1976 Aug; 67(2):421-31. PubMed ID: 964253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural change of the Phe-tRNA Phe-(CCCA) and the effect on the rate of peptide formation.
    Thang MN; Dondon L; Rether B
    FEBS Lett; 1974 Mar; 40(1):67-71. PubMed ID: 4605148
    [No Abstract]   [Full Text] [Related]  

  • 8. Elongation factor 1 from Krebs II mouse ascites cells. Interaction with guanosine nucleotides and aminoacyl-tRNA.
    Nolan RD; Grasmuk H; Högenauer G; Drews J
    Eur J Biochem; 1974 Jun; 45(2):601-9. PubMed ID: 4604426
    [No Abstract]   [Full Text] [Related]  

  • 9. The inhibition of elongation factor 1 activity by heparin.
    Slobin LI
    Biochem Biophys Res Commun; 1976 Dec; 73(3):539-47. PubMed ID: 1008872
    [No Abstract]   [Full Text] [Related]  

  • 10. Purification and properties of polypeptide chain elongation factor-1 beta gamma from pig liver.
    Motoyoshi K; Iwasaki K; Kaziro Y
    J Biochem; 1977 Jul; 82(1):145-55. PubMed ID: 561060
    [No Abstract]   [Full Text] [Related]  

  • 11. The binding of the pyrophosphoryl transferase and the elongation factor Tu and G to ribosomes from Escherichia coli.
    Kleinert U; Richter D
    FEBS Lett; 1975 Jul; 55(1):188-93. PubMed ID: 166884
    [No Abstract]   [Full Text] [Related]  

  • 12. Interaction of eukaryote elongation factor EF 1 with guanosine nucleotides and aminoacyl-tRNA.
    Moon HM; Redfield B; Weissbach H
    Proc Natl Acad Sci U S A; 1972 May; 69(5):1249-52. PubMed ID: 4556458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The binding of aminoacyl-transfer ribonucleic acid to wheat ribosomes.
    Allende JE; Tarragó A; Monasterio O; Litvak S; Gatica M; Ojeda JM; Matamala M
    Biochem Soc Symp; 1973; (38):77-96. PubMed ID: 4807464
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on polypeptide elongation factor 2 from pig liver. III. Interaction with guanine nucleotides in the presence and absence of ribosomes.
    Mizumoto K; Iwasaki K; Kaziro Y
    J Biochem; 1974 Dec; 76(6):1269-80. PubMed ID: 4457547
    [No Abstract]   [Full Text] [Related]  

  • 16. Competitive binding of EF1 and EF2 by mammalian ribosomes: role of GTP hydrolysis in overcoming inhibition by EF2 of aminoacyl-tRNA binding.
    Baliga BS; Schechtman MG; Munro HN
    Biochem Biophys Res Commun; 1973 Mar; 51(2):406-13. PubMed ID: 4693484
    [No Abstract]   [Full Text] [Related]  

  • 17. The heavy form of elongation factor 1 in artemia salina embryos is functionally analogous to a complex of bacterial factors EF-Tu and EF-Ts.
    Slobin LI; Möller W
    Biochem Biophys Res Commun; 1977 Jan; 74(2):356-65. PubMed ID: 836292
    [No Abstract]   [Full Text] [Related]  

  • 18. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site.
    Chinali G; Parmeggiani A
    Biochem Biophys Res Commun; 1973 Sep; 54(1):33-9. PubMed ID: 4582381
    [No Abstract]   [Full Text] [Related]  

  • 19. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA.
    Ringer D; Chládek S
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2950-4. PubMed ID: 1059085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the polypeptide elongation factors from E. coli. V. Properties of various complexes containing EF-Tu and EF-Ts.
    Arai K; Kawakita M; Kaziro Y
    J Biochem; 1974 Aug; 76(2):293-306. PubMed ID: 4609971
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.