These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 12520866)

  • 21. A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family.
    Pesce A; Couture M; Dewilde S; Guertin M; Yamauchi K; Ascenzi P; Moens L; Bolognesi M
    EMBO J; 2000 Jun; 19(11):2424-34. PubMed ID: 10835341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The diversity of 2/2 (truncated) globins.
    Pesce A; Bolognesi M; Nardini M
    Adv Microb Physiol; 2013; 63():49-78. PubMed ID: 24054794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A truncated haemoglobin implicated in oxygen metabolism by the microaerophilic food-borne pathogen Campylobacter jejuni.
    Wainwright LM; Elvers KT; Park SF; Poole RK
    Microbiology (Reading); 2005 Dec; 151(Pt 12):4079-4091. PubMed ID: 16339953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14274-9. PubMed ID: 20660759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical, biochemical and functional characterization of haemoglobin from three strains of Artemia.
    Sugumar V; Munuswamy N
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):291-8. PubMed ID: 17185017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of Single-Domain Globins in Hydrothermal Vent Scale-Worms.
    Projecto-Garcia J; Le Port AS; Govindji T; Jollivet D; Schaeffer SW; Hourdez S
    J Mol Evol; 2017 Dec; 85(5-6):172-187. PubMed ID: 29094190
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Primary structure of a constituent polypeptide chain (AIII) of the giant haemoglobin from the deep-sea tube worm Lamellibrachia. A possible H2S-binding site.
    Suzuki T; Takagi T; Ohta S
    Biochem J; 1990 Feb; 266(1):221-5. PubMed ID: 2310374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperative dimeric and tetrameric clam haemoglobins are novel assemblages of myoglobin folds.
    Royer WE; Love WE; Fenderson FF
    Nature; 1985 Jul 18-24; 316(6025):277-80. PubMed ID: 4022123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of myoglobin.
    Suzuki T; Imai K
    Cell Mol Life Sci; 1998 Sep; 54(9):979-1004. PubMed ID: 9791540
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular adaptations in haemoglobins of notothenioid fishes.
    Giordano D; Russo R; Coppola D; di Prisco G; Verde C
    J Fish Biol; 2010 Feb; 76(2):301-18. PubMed ID: 20738709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonvertebrate hemoglobins: functions and molecular adaptations.
    Weber RE; Vinogradov SN
    Physiol Rev; 2001 Apr; 81(2):569-628. PubMed ID: 11274340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trema and parasponia hemoglobins reveal convergent evolution of oxygen transport in plants.
    Sturms R; Kakar S; Trent J; Hargrove MS
    Biochemistry; 2010 May; 49(19):4085-93. PubMed ID: 20377207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of two globin genes from the malaria mosquito Anopheles gambiae: divergent origin of nematoceran haemoglobins.
    Burmester T; Klawitter S; Hankeln T
    Insect Mol Biol; 2007 Apr; 16(2):133-42. PubMed ID: 17298561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of haemoglobin from actinorhizal plants--an in silico approach.
    Bhattacharya S; Sen A; Thakur S; Tisa LS
    J Biosci; 2013 Nov; 38(4):777-87. PubMed ID: 24287657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms.
    Reeder BJ
    Antioxid Redox Signal; 2010 Oct; 13(7):1087-123. PubMed ID: 20170402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary trace analysis of plant haemoglobins: implications for site-directed mutagenesis.
    Reddy DM
    Bioinformation; 2007 Mar; 1(9):370-5. PubMed ID: 17597924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adventitious variability? The amino acid sequences of nonvertebrate globins.
    Vinogradov SN; Walz DA; Pohajdak B; Moens L; Kapp OH; Suzuki T; Trotman CN
    Comp Biochem Physiol B; 1993 Sep; 106(1):1-26. PubMed ID: 8403841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen transport in invertebrates.
    Mangum CP
    Am J Physiol; 1985 May; 248(5 Pt 2):R505-14. PubMed ID: 3887948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins.
    Milani M; Pesce A; Nardini M; Ouellet H; Ouellet Y; Dewilde S; Bocedi A; Ascenzi P; Guertin M; Moens L; Friedman JM; Wittenberg JB; Bolognesi M
    J Inorg Biochem; 2005 Jan; 99(1):97-109. PubMed ID: 15598494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the contribution of the globin and reductase domains to the ligand-binding properties of bacterial haemoglobins.
    Farrés J; Burckhardt-Herold S; Scherrer J; Frey AD; Kallio PT
    Biochem J; 2007 Oct; 407(1):15-22. PubMed ID: 17617059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.