These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12521289)

  • 1. Application of a reverse transcription-PCR assay to monitor regulation of the catabolic nahAc gene during phenanthrene degradation.
    Marlowe EM; Wang JM; Pepper IL; Maier RM
    Biodegradation; 2002; 13(4):251-60. PubMed ID: 12521289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater.
    Wilson MS; Bakermans C; Madsen EL
    Appl Environ Microbiol; 1999 Jan; 65(1):80-7. PubMed ID: 9872763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in nahAc gene copy numbers during degradation of naphthalene in PAH-contaminated soils.
    Park JW; Crowley DE
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1322-9. PubMed ID: 16804694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site.
    Herrick JB; Stuart-Keil KG; Ghiorse WC; Madsen EL
    Appl Environ Microbiol; 1997 Jun; 63(6):2330-7. PubMed ID: 9172352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of phenanthrene, spatial distribution of bacterial populations and dioxygenase expression in the mycorrhizosphere of Lolium perenne inoculated with Glomus mosseae.
    Corgié SC; Fons F; Beguiristain T; Leyval C
    Mycorrhiza; 2006 May; 16(3):207-212. PubMed ID: 16598504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria.
    Herrick JB; Madsen EL; Batt CA; Ghiorse WC
    Appl Environ Microbiol; 1993 Mar; 59(3):687-94. PubMed ID: 7683182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.
    Gao H; Ma J; Xu L; Jia L
    Environ Sci Pollut Res Int; 2014; 21(14):8620-30. PubMed ID: 24705921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of hydroxypropyl-beta-cyclodextrin on the extraction and biodegradation of phenanthrene in soil.
    Reid BJ; Stokes JD; Jones KC; Semple KT
    Environ Toxicol Chem; 2004 Mar; 23(3):550-6. PubMed ID: 15285345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-beta-cyclodextrin and Triton X-100 extraction techniques.
    Cuypers C; Pancras T; Grotenhuis T; Rulkens W
    Chemosphere; 2002 Mar; 46(8):1235-45. PubMed ID: 11951991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers.
    Tuomi PM; Salminen JM; Jørgensen KS
    FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering
    Qin R; Xu T; Jia X
    Microbiol Spectr; 2022 Aug; 10(4):e0091022. PubMed ID: 35730952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of a bacterial consortium enriched from an oilfield that degrades phenanthrene.
    Wang Z; Zhang J; Zhang Y; Hesham AL; Yang M
    Biotechnol Lett; 2006 May; 28(9):617-21. PubMed ID: 16642297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of hydroxypropyl-beta-cyclodextrin (HPCD) on the bioavailability and biodegradation of pyrene.
    Wang JM; Maier RM; Brusseau ML
    Chemosphere; 2005 Jul; 60(5):725-8. PubMed ID: 15963811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6.
    Ma Z; Liu J; Dick RP; Li H; Shen D; Gao Y; Waigi MG; Ling W
    Environ Pollut; 2018 Sep; 240():359-367. PubMed ID: 29751332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer.
    Ma Y; Wang L; Shao Z
    Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A targeted real-time PCR assay for studying naphthalene degradation in the environment.
    Nyyssönen M; Piskonen R; Itävaara M
    Microb Ecol; 2006 Oct; 52(3):533-43. PubMed ID: 17013553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil.
    Doick KJ; Clasper PJ; Urmann K; Semple KT
    Environ Pollut; 2006 Nov; 144(1):345-54. PubMed ID: 16564118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria.
    Moser R; Stahl U
    Appl Microbiol Biotechnol; 2001 May; 55(5):609-18. PubMed ID: 11414329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils.
    Badr T; Hanna K; de Brauer C
    J Hazard Mater; 2004 Aug; 112(3):215-23. PubMed ID: 15302442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection in coal tar waste-contaminated groundwater of mRNA transcripts related to naphthalene dioxygenase by fluorescent in situ hybridization with tyramide signal amplification.
    Bakermans C; Madsen EL
    J Microbiol Methods; 2002 Jun; 50(1):75-84. PubMed ID: 11943360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.