BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 12522147)

  • 1. Checkpoint arrest signaling in response to UV damage is independent of nucleotide excision repair in Saccharomyces cerevisiae.
    Zhang H; Taylor J; Siede W
    J Biol Chem; 2003 Mar; 278(11):9382-7. PubMed ID: 12522147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells.
    Giannattasio M; Lazzaro F; Siede W; Nunes E; Plevani P; Muzi-Falconi M
    DNA Repair (Amst); 2004 Dec; 3(12):1591-9. PubMed ID: 15474420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair.
    Gerald JN; Benjamin JM; Kron SJ
    J Cell Sci; 2002 Apr; 115(Pt 8):1749-57. PubMed ID: 11950891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperactivation of the yeast DNA damage checkpoint by TEL1 and DDC2 overexpression.
    Clerici M; Paciotti V; Baldo V; Romano M; Lucchini G; Longhese MP
    EMBO J; 2001 Nov; 20(22):6485-98. PubMed ID: 11707419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae.
    Navas TA; Sanchez Y; Elledge SJ
    Genes Dev; 1996 Oct; 10(20):2632-43. PubMed ID: 8895664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae.
    Scott KL; Plon SE
    Mol Cell Biol; 2003 Jul; 23(13):4522-31. PubMed ID: 12808094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast.
    Neecke H; Lucchini G; Longhese MP
    EMBO J; 1999 Aug; 18(16):4485-97. PubMed ID: 10449414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells.
    Evert BA; Salmon TB; Song B; Jingjing L; Siede W; Doetsch PW
    J Biol Chem; 2004 May; 279(21):22585-94. PubMed ID: 15020594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint.
    Chakraverty RK; Kearsey JM; Oakley TJ; Grenon M; de La Torre Ruiz MA; Lowndes NF; Hickson ID
    Mol Cell Biol; 2001 Nov; 21(21):7150-62. PubMed ID: 11585898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest.
    Pellicioli A; Lee SE; Lucca C; Foiani M; Haber JE
    Mol Cell; 2001 Feb; 7(2):293-300. PubMed ID: 11239458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducible nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers in the cell cycle of the budding yeast Saccharomyces cerevisiae: evidence that inducible NER is confined to the G1 phase of the mitotic cell cycle.
    Scott AD; Waters R
    Mol Gen Genet; 1997 Mar; 254(1):43-53. PubMed ID: 9108289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint.
    Giannattasio M; Lazzaro F; Longhese MP; Plevani P; Muzi-Falconi M
    EMBO J; 2004 Jan; 23(2):429-38. PubMed ID: 14726955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for DNA primase in coupling DNA replication to DNA damage response.
    Marini F; Pellicioli A; Paciotti V; Lucchini G; Plevani P; Stern DF; Foiani M
    EMBO J; 1997 Feb; 16(3):639-50. PubMed ID: 9034345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response.
    Brush GS; Kelly TJ
    Nucleic Acids Res; 2000 Oct; 28(19):3725-32. PubMed ID: 11000264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Checkpoint kinase phosphorylation in response to endogenous oxidative DNA damage in repair-deficient stationary-phase Saccharomyces cerevisiae.
    Pawar V; Jingjing L; Patel N; Kaur N; Doetsch PW; Shadel GS; Zhang H; Siede W
    Mech Ageing Dev; 2009 Aug; 130(8):501-8. PubMed ID: 19540258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9.
    Wysocki R; Javaheri A; Allard S; Sha F; Côté J; Kron SJ
    Mol Cell Biol; 2005 Oct; 25(19):8430-43. PubMed ID: 16166626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast Xrs2 complex functions in S phase checkpoint regulation.
    D'Amours D; Jackson SP
    Genes Dev; 2001 Sep; 15(17):2238-49. PubMed ID: 11544181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways.
    Sun Z; Fay DS; Marini F; Foiani M; Stern DF
    Genes Dev; 1996 Feb; 10(4):395-406. PubMed ID: 8600024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase.
    Vaze MB; Pellicioli A; Lee SE; Ira G; Liberi G; Arbel-Eden A; Foiani M; Haber JE
    Mol Cell; 2002 Aug; 10(2):373-85. PubMed ID: 12191482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.