BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 12522166)

  • 41. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity.
    Smith JC; Greer JJ; Liu GS; Feldman JL
    J Neurophysiol; 1990 Oct; 64(4):1149-69. PubMed ID: 2258739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Firing patterns of pre-Bötzinger and Bötzinger neurons during hypocapnia in the adult rat.
    Sun Q; Goodchild AK; Pilowsky PM
    Brain Res; 2001 Jun; 903(1-2):198-206. PubMed ID: 11382403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage.
    Perez Velazquez JL; Kokarovtseva L; Sarbaziha R; Jeyapalan Z; Leshchenko Y
    Eur J Neurosci; 2006 Jan; 23(1):1-10. PubMed ID: 16420410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro.
    Onimaru H; Ballanyi K; Homma I
    J Physiol; 2003 Nov; 552(Pt 3):727-41. PubMed ID: 12937288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of the serotonin synthesis inhibitor p-CPA on the expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection.
    Hadley SD; Walker PD; Goshgarian HG
    Exp Neurol; 1999 Dec; 160(2):479-88. PubMed ID: 10619565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modulation of expiratory motor output evoked by chemical activation of pre-Bötzinger complex in vivo.
    Solomon IC
    Respir Physiol Neurobiol; 2002 Jun; 130(3):235-51. PubMed ID: 12093621
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-frequency oscillations in phrenic activity during pontile and medullary respiratory rhythms in rats.
    St-John WM; Leiter JC
    Exp Physiol; 2007 Mar; 92(2):457-66. PubMed ID: 17138621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative.
    Goldberg GS; Moreno AP; Bechberger JF; Hearn SS; Shivers RR; MacPhee DJ; Zhang YC; Naus CC
    Exp Cell Res; 1996 Jan; 222(1):48-53. PubMed ID: 8549672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inspiratory activity responses to lung inflation and ventral medullary surface cooling of glossopharyngeal nerve (stylopharyngeal muscle branch) and its motoneuron distribution in the rat.
    Fukuda Y; Tanaka K; Chiba T
    Neurosci Res; 1995 Aug; 23(1):103-14. PubMed ID: 7501295
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative assessment of respiratory function following contusion injury of the cervical spinal cord.
    el-Bohy AA; Schrimsher GW; Reier PJ; Goshgarian HG
    Exp Neurol; 1998 Mar; 150(1):143-52. PubMed ID: 9514833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Do gap junctions play a role in nerve transmissions as well as pacing in mouse intestine?
    Daniel EE; Yazbi AE; Mannarino M; Galante G; Boddy G; Livergant J; Oskouei TE
    Am J Physiol Gastrointest Liver Physiol; 2007 Mar; 292(3):G734-45. PubMed ID: 17122366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two types of rhythm in the respiratory network output in the isolated ventrolateral medulla in the neonatal rats.
    Shvarev YN; Lagercrantz H; Yamamoto Y
    Neurosci Lett; 2003 Aug; 347(1):53-6. PubMed ID: 12865140
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Glycine is involved in the modulation of respiratory rhythmical discharge activity in neonatal rat medullary brain slices].
    Cheng J; Qian ZB; Wu ZH
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Dec; 28(12):2142-5. PubMed ID: 19114341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monosynaptic transmission of respiratory drive to phrenic motoneurons from brainstem bulbospinal neurons in rats.
    Ellenberger HH; Feldman JL
    J Comp Neurol; 1988 Mar; 269(1):47-57. PubMed ID: 3361003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Developmental effects of ketamine on inspiratory hypoglossal nerve activity studied in vivo and in vitro.
    Berger AJ; Sebe J
    Respir Physiol Neurobiol; 2007 Aug; 157(2-3):206-14. PubMed ID: 17267296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurones.
    Zanella S; Roux JC; Viemari JC; Hilaire G
    Respir Physiol Neurobiol; 2006 Sep; 153(2):126-38. PubMed ID: 16309976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. alpha1-adrenergic receptor-induced slow rhythmicity in nonrespiratory cervical motoneurons of neonatal rat spinal cord.
    Morin D; Bonnot A; Ballion B; Viala D
    Eur J Neurosci; 2000 Aug; 12(8):2950-66. PubMed ID: 10971636
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Junctional and nonjunctional effects of heptanol and glycyrrhetinic acid derivates in rat mesenteric small arteries.
    Matchkov VV; Rahman A; Peng H; Nilsson H; Aalkjaer C
    Br J Pharmacol; 2004 Jul; 142(6):961-72. PubMed ID: 15210581
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Central nervous mechanisms in the generation of the pattern of breathing.
    Pantaleo T; Bongianni F; Mutolo D
    Arch Ital Biol; 2005 Sep; 143(3-4):207-14. PubMed ID: 16097497
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of inhibitory amino acids in control of respiratory motor output in an arterially perfused rat.
    Hayashi F; Lipski J
    Respir Physiol; 1992 Jul; 89(1):47-63. PubMed ID: 1325666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.