These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 12522169)

  • 21. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consecutive learning of opposing unimanual motor tasks using the right arm followed by the left arm causes intermanual interference.
    Stockinger C; Thürer B; Stein T
    PLoS One; 2017; 12(5):e0176594. PubMed ID: 28459833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural correlates associated with intermanual transfer of sensorimotor adaptation.
    Anguera JA; Russell CA; Noll DC; Seidler RD
    Brain Res; 2007 Dec; 1185():136-51. PubMed ID: 17996854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces.
    Galea JM; Miall RC; Woolley DG
    Exp Brain Res; 2007 Sep; 182(2):267-73. PubMed ID: 17703286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The symmetry of interlimb transfer depends on workspace locations.
    Wang J; Sainburg RL
    Exp Brain Res; 2006 Apr; 170(4):464-71. PubMed ID: 16328262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct coordinate systems for adaptations of movement direction and extent.
    Poh E; Carroll TJ; de Rugy A
    J Neurophysiol; 2017 Nov; 118(5):2670-2686. PubMed ID: 28835524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavior of dominant and non dominant hands during ballistic protractive target-directed movements.
    Zuoza A; Skurvydas A; Mickeviciene D; Gutnik B; Zouzene D; Penchev B; Pencheva S
    Fiziol Cheloveka; 2009; 35(5):62-70. PubMed ID: 19899693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccade adaptation in response to altered arm dynamics.
    Nanayakkara T; Shadmehr R
    J Neurophysiol; 2003 Dec; 90(6):4016-21. PubMed ID: 14665687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interlimb transfer of visuomotor rotations: independence of direction and final position information.
    Sainburg RL; Wang J
    Exp Brain Res; 2002 Aug; 145(4):437-47. PubMed ID: 12172655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateralization of motor adaptation reveals independence in control of trajectory and steady-state position.
    Duff SV; Sainburg RL
    Exp Brain Res; 2007 Jun; 179(4):551-61. PubMed ID: 17171336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Left hemisphere specialization for the control of voluntary movement rate.
    Agnew JA; Zeffiro TA; Eden GF
    Neuroimage; 2004 May; 22(1):289-303. PubMed ID: 15110019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acquisition of a complex basketball-dribbling task in school children as a function of bilateral practice order.
    Stöckel T; Weigelt M; Krug J
    Res Q Exerc Sport; 2011 Jun; 82(2):188-97. PubMed ID: 21699098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements.
    Maschke M; Gomez CM; Ebner TJ; Konczak J
    J Neurophysiol; 2004 Jan; 91(1):230-8. PubMed ID: 13679403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prism adaptation during walking generalizes to reaching and requires the cerebellum.
    Morton SM; Bastian AJ
    J Neurophysiol; 2004 Oct; 92(4):2497-509. PubMed ID: 15190088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different learned coordinate frames for planning trajectories and final positions in reaching.
    Ghez C; Scheidt R; Heijink H
    J Neurophysiol; 2007 Dec; 98(6):3614-26. PubMed ID: 17804576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic drive of limb motor plasticity.
    Magescas F; Prablanc C
    J Cogn Neurosci; 2006 Jan; 18(1):75-83. PubMed ID: 16417684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer of motor learning across arm configurations.
    Malfait N; Shiller DM; Ostry DJ
    J Neurosci; 2002 Nov; 22(22):9656-60. PubMed ID: 12427820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Right-handers' reaching in contralateral hemispace: a kinematic observation.
    Kim W; Gabbard C; Buchanan JJ; Ryu YU
    J Mot Behav; 2007 Nov; 39(6):451-6. PubMed ID: 18055351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.