BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 12522443)

  • 1. Principles of tumor immunosurveillance and implications for immunotherapy.
    Ochsenbein AF
    Cancer Gene Ther; 2002 Dec; 9(12):1043-55. PubMed ID: 12522443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor resistance to CD8+ T cell-based therapeutic vaccination.
    Huang Y; Shah S; Qiao L
    Arch Immunol Ther Exp (Warsz); 2007; 55(4):205-17. PubMed ID: 17659376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor-host immune interactions and dendritic cell dysfunction.
    Yang L; Carbone DP
    Adv Cancer Res; 2004; 92():13-27. PubMed ID: 15530555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune responses to human tumors: development of tumor vaccines.
    Platsoucas CD; Fincke JE; Pappas J; Jung WJ; Heckel M; Schwarting R; Magira E; Monos D; Freedman RS
    Anticancer Res; 2003; 23(3A):1969-96. PubMed ID: 12894571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immune selection in murine tumors. Ph.d thesis.
    Svane IM; Engel AM
    APMIS Suppl; 2003; (106):1-46. PubMed ID: 12739251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Cytotoxic T lymphocytes: role in immunosurveillance and in immunotherapy].
    Benchetrit F; Gazagne A; Adotevi O; Haicheur N; Godard B; Badoual C; Fridman WH; Tartour E
    Bull Cancer; 2003; 90(8-9):677-85. PubMed ID: 14609756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MHC class I antigens, immune surveillance, and tumor immune escape.
    Garcia-Lora A; Algarra I; Garrido F
    J Cell Physiol; 2003 Jun; 195(3):346-55. PubMed ID: 12704644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting costimulatory pathways for tumor immunotherapy.
    Ward RC; Kaufman HL
    Int Rev Immunol; 2007; 26(3-4):161-96. PubMed ID: 17558743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [MHC tetramers: tracking specific immunity].
    Kosor E; Gagro A; Drazenović V; Kuzman I; Jeren T; Rakusić S; Rabatić S; Markotić A; Gotovac K; Sabioncello A; Cecuk E; Kerhin-Brkljacić V; Gjenero-Margan I; Kaić B; Mlinarić-Galinović G; Kastelan A; Dekaris D
    Acta Med Croatica; 2003; 57(4):255-9. PubMed ID: 14639858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vaccine therapy of established tumors in the absence of autoimmunity.
    Hodge JW; Grosenbach DW; Aarts WM; Poole DJ; Schlom J
    Clin Cancer Res; 2003 May; 9(5):1837-49. PubMed ID: 12738742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokine, chemokine, and co-stimulatory fusion proteins for the immunotherapy of solid tumors.
    Khawli LA; Hu P; Epstein AL
    Handb Exp Pharmacol; 2008; (181):291-328. PubMed ID: 18071951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic cells engineered to express the Flt3 ligand stimulate type I immune response, and induce enhanced cytoxic T and natural killer cell cytotoxicities and antitumor immunity.
    Liu Y; Huang H; Chen Z; Zong L; Xiang J
    J Gene Med; 2003 Aug; 5(8):668-80. PubMed ID: 12898636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forcing tumor cells to present their own tumor antigens to the immune system: a necessary design for an efficient tumor immunotherapy.
    Humphreys RE; Hillman GG; von Hofe E; Xu M
    Cell Mol Immunol; 2004 Jun; 1(3):180-5. PubMed ID: 16219165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmenting major histocompatibility complex class I expression by murine tumors in vivo enhances antitumor immunity induced by an active immunotherapy strategy.
    Merritt RE; Yamada RE; Crystal RG; Korst RJ
    J Thorac Cardiovasc Surg; 2004 Feb; 127(2):355-64. PubMed ID: 14762342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies.
    Li B; Simmons A; Du T; Lin C; Moskalenko M; Gonzalez-Edick M; VanRoey M; Jooss K
    Clin Immunol; 2009 Nov; 133(2):184-97. PubMed ID: 19664962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein: implication for cancer immunotherapy.
    Fassnacht M; Lee J; Milazzo C; Boczkowski D; Su Z; Nair S; Gilboa E
    Clin Cancer Res; 2005 Aug; 11(15):5566-71. PubMed ID: 16061874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turning tumor cells in situ into T-helper cell-stimulating, MHC class II tumor epitope-presenters: immuno-curing and immuno-consolidation.
    Hillman GG; Kallinteris NL; Lu X; Wang Y; Wright JL; Li Y; Wu S; Forman JD; Gulfo JV; Humphreys RE; Xu M
    Cancer Treat Rev; 2004 May; 30(3):281-90. PubMed ID: 15059651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-lymphatic solid tumor growth is not immunologically ignored and results in early induction of antigen-specific T-cell anergy: dominant role of cross-tolerance to tumor antigens.
    Cuenca A; Cheng F; Wang H; Brayer J; Horna P; Gu L; Bien H; Borrello IM; Levitsky HI; Sotomayor EM
    Cancer Res; 2003 Dec; 63(24):9007-15. PubMed ID: 14695219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants.
    van Hall T; Wolpert EZ; van Veelen P; Laban S; van der Veer M; Roseboom M; Bres S; Grufman P; de Ru A; Meiring H; de Jong A; Franken K; Teixeira A; Valentijn R; Drijfhout JW; Koning F; Camps M; Ossendorp F; Kärre K; Ljunggren HG; Melief CJ; Offringa R
    Nat Med; 2006 Apr; 12(4):417-24. PubMed ID: 16550190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferon-gamma: biologic functions and HCV therapy (type I/II) (1 of 2 parts).
    Gattoni A; Parlato A; Vangieri B; Bresciani M; Derna R
    Clin Ter; 2006; 157(4):377-86. PubMed ID: 17051976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.