BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12522451)

  • 1. Comparative genomic hybridization and multiplex-fluorescence in situ hybridization: an appraisal in elderly patients with acute myelogenous leukemia.
    Dalley CD; Neat MJ; Foot NJ; Burridge M; Byrne L; Amess JA; Rohatiner AZ; Lister A; Young BD; Lillington DM
    Hematol J; 2002; 3(6):290-8. PubMed ID: 12522451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization.
    Gribble SM; Roberts I; Grace C; Andrews KM; Green AR; Nacheva EP
    Cancer Genet Cytogenet; 2000 Apr; 118(1):1-8. PubMed ID: 10731582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH.
    Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W
    Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomic hybridization-aided unraveling of complex karyotypes in human hematopoietic neoplasias.
    Verdorfer I; Brecevic L; Saul W; Schenker B; Kirsch M; Trautmann U; Helm G; Gramatzki M; Gebhart E
    Cancer Genet Cytogenet; 2001 Jan; 124(1):1-6. PubMed ID: 11165314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization.
    Tosi S; Giudici G; Rambaldi A; Scherer SW; Bray-Ward P; Dirscherl L; Biondi A; Kearney L
    Genes Chromosomes Cancer; 1999 Mar; 24(3):213-21. PubMed ID: 10451701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding.
    Kuchinskaya E; Heyman M; Nordgren A; Schoumans J; Staaf J; Borg A; Söderhäll S; Grandér D; Nordenskjöld M; Blennow E
    Br J Haematol; 2008 Mar; 140(5):572-7. PubMed ID: 18275435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex fluorescence in situ hybridization in identifying chromosome involvement of complex karyotypes in de novo myelodysplastic syndromes and acute myeloid leukemia.
    Xu W; Li JY; Liu Q; Zhu Y; Pan JL; Qiu HR; Xue YQ
    Int J Lab Hematol; 2010 Feb; 32(1 Pt 1):e86-95. PubMed ID: 20089000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic hybridization based strategy for the analysis of different chromosome imbalances detected in conventional cytogenetic diagnostics.
    Tönnies H; Stumm M; Wegner RD; Chudoba I; Kalscheuer V; Neitzel H
    Cytogenet Cell Genet; 2001; 93(3-4):188-94. PubMed ID: 11528111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of hematologic diseases using conventional karyotyping, fluorescence in situ hybridization (FISH), and comparative genomic hybridization (CGH).
    Wilkens L; Tchinda J; Burkhardt D; Nolte M; Werner M; Georgii A
    Hum Pathol; 1998 Aug; 29(8):833-9. PubMed ID: 9712425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diagnosis by comparative genomic hybridization in adult de novo acute myelocytic leukemia.
    Casas S; Aventín A; Fuentes F; Vallespí T; Granada I; Carrió A; Angel Martínez-Climent J; Solé F; Teixidó M; Bernués M; Duarte J; Maria Hernández J; Brunet S; Dolors Coll M; Sierra J
    Cancer Genet Cytogenet; 2004 Aug; 153(1):16-25. PubMed ID: 15325089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of conventional cytogenetics, comparative genomic hybridisation and interphase fluorescence in situ hybridisation for the detection of genomic rearrangements in acute leukaemia.
    McGrattan P; Campbell S; Cuthbert R; Jones FG; McMullin MF; Humphreys M
    J Clin Pathol; 2008 Aug; 61(8):903-8. PubMed ID: 18474541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of comparative genomic hybridization as an additional tool in the chromosome analysis of acute myeloid leukemia and myelodysplastic syndromes.
    Kim MH; Stewart J; Devlin C; Kim YT; Boyd E; Connor M
    Cancer Genet Cytogenet; 2001 Apr; 126(1):26-33. PubMed ID: 11343775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of high-resolution comparative genomic hybridization (HR-CGH) in detection of chromosomal abnormalities in children with acute leukaemia.
    Vranova V; Mentzlova D; Oltova A; Linkova V; Zezulkova D; Filkova H; Mendelova D; Sterba J; Kuglik P
    Neoplasma; 2008; 55(1):23-30. PubMed ID: 18190236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic value of fluorescence in situ hybridization for the detection of genomic aberrations in older patients with acute myeloid leukemia.
    Fröhling S; Kayser S; Mayer C; Miller S; Wieland C; Skelin S; Schlenk RF; Döhner H; Döhner K;
    Haematologica; 2005 Feb; 90(2):194-9. PubMed ID: 15710571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?
    Peterson JF; Aggarwal N; Smith CA; Gollin SM; Surti U; Rajkovic A; Swerdlow SH; Yatsenko SA
    Oncotarget; 2015 Aug; 6(22):18845-62. PubMed ID: 26299921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of cryptic chromosomal aberrations in the in vitro non-proliferating cells of acute myeloid leukemia.
    Karst C; Heller A; Claussen U; Gebhart E; Liehr T
    Int J Oncol; 2005 Aug; 27(2):355-9. PubMed ID: 16010415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do we need to do fluorescence in situ hybridization analysis in myelodysplastic syndromes as often as we do?
    Costa D; Valera S; Carrió A; Arias A; Muñoz C; Rozman M; Belkaid M; Coutinho R; Nomdedeu B; Campo E
    Leuk Res; 2010 Nov; 34(11):1437-41. PubMed ID: 20226525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetic profile in de novo acute myeloid leukemia with FAB subtypes M0, M1, and M2: a study based on 652 cases analyzed with morphology, cytogenetics, and fluorescence in situ hybridization.
    Klaus M; Haferlach T; Schnittger S; Kern W; Hiddemann W; Schoch C
    Cancer Genet Cytogenet; 2004 Nov; 155(1):47-56. PubMed ID: 15527902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of using comparative genomic hybridization to improve detection of chromosomal changes in childhood acute lymphoblastic leukemia.
    Jarosová M; Holzerová M; Jedlicková K; Mihál V; Zuna J; Starý J; Pospísilová D; Zemanová Z; Trka J; Blazek J; Pikalová Z; Indrák K
    Cancer Genet Cytogenet; 2000 Dec; 123(2):114-22. PubMed ID: 11156736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of recurrent cytogenetic abnormalities in acute lymphoblastic and myeloid leukemias using fluorescence in situ hybridization.
    Vance GH
    Methods Mol Biol; 2013; 999():79-91. PubMed ID: 23666691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.