These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 12522818)
1. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability. Hyung Park J; Bae YH J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818 [TBL] [Abstract][Full Text] [Related]
2. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Park JH; Bae YH Biomaterials; 2002 Apr; 23(8):1797-808. PubMed ID: 11950050 [TBL] [Abstract][Full Text] [Related]
3. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
4. The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Simmons A; Hyvarinen J; Poole-Warren L Biomaterials; 2006 Sep; 27(25):4484-97. PubMed ID: 16690122 [TBL] [Abstract][Full Text] [Related]
5. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on polydimethylsiloxane, low density polyethylene, and polyetherurethanes. Kao WJ; Zhao QH; Hiltner A; Anderson JM J Biomed Mater Res; 1994 Jan; 28(1):73-9. PubMed ID: 8126032 [TBL] [Abstract][Full Text] [Related]
6. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Kimura M; Takai M; Ishihara K J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047 [TBL] [Abstract][Full Text] [Related]
7. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO. Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on strained poly(etherurethane urea) elastomers. Kao WJ; Hiltner A; Anderson JM; Lodoen GA J Biomed Mater Res; 1994 Jul; 28(7):819-29. PubMed ID: 8083250 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874 [TBL] [Abstract][Full Text] [Related]
11. In vivo biostability of polyether polyurethanes with polyethylene oxide surface-modifying end groups; resistance to biologic oxidation and stress cracking. Ebert M; Ward B; Anderson J; McVenes R; Stokes K J Biomed Mater Res A; 2005 Oct; 75(1):175-84. PubMed ID: 16041797 [TBL] [Abstract][Full Text] [Related]
12. Adhesion behavior of peritoneal cells on the surface of self-assembled triblock copolymer hydrogels. Tanaka S; Ogura A; Kaneko T; Murata Y; Akashi M Biomacromolecules; 2004; 5(6):2447-55. PubMed ID: 15530062 [TBL] [Abstract][Full Text] [Related]
13. Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Seo JH; Matsuno R; Takai M; Ishihara K Biomaterials; 2009 Oct; 30(29):5330-40. PubMed ID: 19592090 [TBL] [Abstract][Full Text] [Related]
14. In vitro biocompatibility of PTMO-based polyurethanes and those containing PDMS blocks. Hsu SH; Tseng HJ J Biomater Appl; 2004 Oct; 19(2):135-46. PubMed ID: 15381786 [TBL] [Abstract][Full Text] [Related]
15. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties. Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391 [TBL] [Abstract][Full Text] [Related]
16. Degradation of polyetherurethane by subcutaneous implantation into rats. II. Changes of contact angles, infrared spectra, and nuclear magnetic resonance spectra. Sato M; Xi T; Nakamura A; Kawasaki Y; Umemura T; Tsuda M; Kurokawa Y J Biomed Mater Res; 1995 Oct; 29(10):1201-13. PubMed ID: 8557722 [TBL] [Abstract][Full Text] [Related]
17. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Han DK; Park K; Park KD; Ahn KD; Kim YH Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds. Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747 [TBL] [Abstract][Full Text] [Related]
19. Characterization and demulsification of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Zhang Z; Xu GY; Wang F; Dong SL; Li YM J Colloid Interface Sci; 2004 Sep; 277(2):464-70. PubMed ID: 15341860 [TBL] [Abstract][Full Text] [Related]
20. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications. Pinto S; Alves P; Matos CM; Santos AC; Rodrigues LR; Teixeira JA; Gil MH Colloids Surf B Biointerfaces; 2010 Nov; 81(1):20-6. PubMed ID: 20638249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]