These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12523520)

  • 1. Vertical mixing of oil droplets by breaking waves.
    Tkalich P; Chan ES
    Mar Pollut Bull; 2002 Nov; 44(11):1219-29. PubMed ID: 12523520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oil spill model OILTRANS and its application to the Celtic Sea.
    Berry A; Dabrowski T; Lyons K
    Mar Pollut Bull; 2012 Nov; 64(11):2489-501. PubMed ID: 22901703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oil slicks on water surface: Breakup, coalescence, and droplet formation under breaking waves.
    Nissanka ID; Yapa PD
    Mar Pollut Bull; 2017 Jan; 114(1):480-493. PubMed ID: 27745739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2008 May; 56(5):903-12. PubMed ID: 18325540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a unified oil droplet size distribution model with application to surface breaking waves and subsea blowout releases considering dispersant effects.
    Li Z; Spaulding M; French McCay D; Crowley D; Payne JR
    Mar Pollut Bull; 2017 Jan; 114(1):247-257. PubMed ID: 27650116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of ocean waves on transport of underwater spilled oil in the Bohai Sea.
    Cao R; Chen H; Rong Z; Lv X
    Mar Pollut Bull; 2021 Oct; 171():112702. PubMed ID: 34298324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2009 May; 58(5):735-44. PubMed ID: 19157465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.
    Olsen GH; Coquillé N; Le Floch S; Geraudie P; Dussauze M; Lemaire P; Camus L
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6497-505. PubMed ID: 26635217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.
    Liyana-Arachchi TP; Zhang Z; Ehrenhauser FS; Avij P; Valsaraj KT; Hung FR
    Environ Sci Process Impacts; 2014 Jan; 16(1):53-64. PubMed ID: 24296764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical oil spill model based on a hybrid method.
    Guo WJ; Wang YX
    Mar Pollut Bull; 2009 May; 58(5):726-34. PubMed ID: 19157462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway.
    Ehrenhauser FS; Avij P; Shu X; Dugas V; Woodson I; Liyana-Arachchi T; Zhang Z; Hung FR; Valsaraj KT
    Environ Sci Process Impacts; 2014 Jan; 16(1):65-73. PubMed ID: 24296745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model to predict rate of dissolution of toxic compounds into seawater from an oil spill.
    Riazi MR; Roomi YA
    Int J Toxicol; 2008; 27(5):379-86. PubMed ID: 19037808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three dimensional simulation of transport and fate of oil spill under wave induced circulation.
    Liu T; Peter Sheng Y
    Mar Pollut Bull; 2014 Mar; 80(1-2):148-59. PubMed ID: 24485099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of dispersant on crude oil content of airborne fine particulate matter emitted from seawater after an oil spill.
    Afshar-Mohajer N; Lam A; Dora L; Katz J; Rule AM; Koehler K
    Chemosphere; 2020 Oct; 256():127063. PubMed ID: 32438130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of water-in-crude oil emulsions in oil spill response.
    Wei QF; Mather RR; Fotheringham AF; Yang RD
    J Environ Sci (China); 2003 Jul; 15(4):506-9. PubMed ID: 12974312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Petroleum hydrocarbon contaminations in the intertidal seawater after the Hebei Spirit oil spill--effect of tidal cycle on the TPH concentrations and the chromatographic characterization of seawater extracts.
    Kim M; Hong SH; Won J; Yim UH; Jung JH; Ha SY; An JG; Joo C; Kim E; Han GM; Baek S; Choi HW; Shim WJ
    Water Res; 2013 Feb; 47(2):758-68. PubMed ID: 23182665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithm for modeling entrainment and naturally and chemically dispersed oil droplet size distribution under surface breaking wave conditions.
    Li Z; Spaulding ML; French-McCay D
    Mar Pollut Bull; 2017 Jun; 119(1):145-152. PubMed ID: 28365022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dispersed Petrobaltic oil droplet size on photosynthetically active radiation in marine environment.
    Haule K; Freda W
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6506-16. PubMed ID: 26635218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants.
    Sørensen L; Melbye AG; Booth AM
    Mar Pollut Bull; 2014 Jan; 78(1-2):146-52. PubMed ID: 24257650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-material fractionation in Gulf deep water horizontal intrusion layer: Field data analysis with chemodynamic fate model for Macondo 252 oil spill.
    Melvin AT; Thibodeaux LJ; Parsons AR; Overton E; Valsaraj KT; Nandakumar K
    Mar Pollut Bull; 2016 Apr; 105(1):110-9. PubMed ID: 26947926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.