These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12523565)
1. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Choi C; Bareiss C; Walenciak O; Gross EM J Chem Ecol; 2002 Nov; 28(11):2245-56. PubMed ID: 12523565 [TBL] [Abstract][Full Text] [Related]
2. Chemical defense in Elodea nuttallii reduces feeding and growth of aquatic herbivorous Lepidoptera. Erhard D; Pohnert G; Gross EM J Chem Ecol; 2007 Aug; 33(8):1646-61. PubMed ID: 17577598 [TBL] [Abstract][Full Text] [Related]
3. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. Walenciak O; Zwisler W; Gros EM J Chem Ecol; 2002 Oct; 28(10):2045-56. PubMed ID: 12474899 [TBL] [Abstract][Full Text] [Related]
4. Gut pH, redox conditions and oxygen levels in an aquatic caterpillar: potential effects on the fate of ingested tannins. Gross EM; Brune A; Walenciak O J Insect Physiol; 2008 Feb; 54(2):462-71. PubMed ID: 18171578 [TBL] [Abstract][Full Text] [Related]
5. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Gross EM; Johnson RL; Hairston NG Oecologia; 2001 Mar; 127(1):105-114. PubMed ID: 28547160 [TBL] [Abstract][Full Text] [Related]
6. Induced responses to grazing by an insect herbivore (Acentria ephemerella) in an immature macrophyte (Myriophyllum spicatum): an isotopic study. Rothhaupt KO; Fornoff F; Yohannes E Ecol Evol; 2015 Sep; 5(17):3657-65. PubMed ID: 26380694 [TBL] [Abstract][Full Text] [Related]
7. Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Fornoff F; Gross EM Oecologia; 2014 May; 175(1):173-85. PubMed ID: 24429525 [TBL] [Abstract][Full Text] [Related]
8. The uptake and distribution of selenium in three aquatic plants grown in Se(IV) solution. Mechora S; Stibilj V; Germ M Aquat Toxicol; 2013 Mar; 128-129():53-9. PubMed ID: 23261671 [TBL] [Abstract][Full Text] [Related]
9. Polyphenols and fatty acids responsible for anti-cyanobacterial allelopathic effects of submerged macrophyte Myriophyllum spicatum. Nakai S; Zou G; Okuda T; Nishijima W; Hosomi M; Okada M Water Sci Technol; 2012; 66(5):993-9. PubMed ID: 22797226 [TBL] [Abstract][Full Text] [Related]
10. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Zhu J; Liu B; Wang J; Gao Y; Wu Z Aquat Toxicol; 2010 Jun; 98(2):196-203. PubMed ID: 20451264 [TBL] [Abstract][Full Text] [Related]
11. Reproductive Allocation in Three Macrophyte Species from Different Lakes with Variable Eutrophic Conditions. Wan T; Han Q; Xian L; Cao Y; Andrew AA; Pan X; Li W; Liu F PLoS One; 2016; 11(11):e0165234. PubMed ID: 27806122 [TBL] [Abstract][Full Text] [Related]
12. Growth and energetics of a trichopteran larva feeding on fresh submerged and terrestrial plants. Jacobsen D; Sand-Jensen K Oecologia; 1994 Apr; 97(3):412-418. PubMed ID: 28313638 [TBL] [Abstract][Full Text] [Related]
13. Polyphenolic allelochemicals from the aquatic angiosperm Myriophyllum spicatum inhibit photosystem II. Leu E; Krieger-Liszkay A; Goussias C; Gross EM Plant Physiol; 2002 Dec; 130(4):2011-8. PubMed ID: 12481084 [TBL] [Abstract][Full Text] [Related]
14. Toxicity of linear alkylbenzene sulfonate to aquatic plant Potamogeton perfoliatus L. Zhou J; Wu Z; Yu D; Pang Y; Cai H; Liu Y Environ Sci Pollut Res Int; 2018 Nov; 25(32):32303-32311. PubMed ID: 30229487 [TBL] [Abstract][Full Text] [Related]
15. Phytotoxicity of atrazine, isoproturon, and diuron to submersed macrophytes in outdoor mesocosms. Knauert S; Singer H; Hollender J; Knauer K Environ Pollut; 2010 Jan; 158(1):167-74. PubMed ID: 19656602 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic profiling of atrazine phytotoxicity and comparative study of atrazine uptake, movement, and metabolism in Potamogeton crispus and Myriophyllum spicatum. Qu M; Mei Y; Liu G; Zhao J; Liu W; Li S; Huang F; Zhu D Environ Res; 2021 Mar; 194():110724. PubMed ID: 33421427 [TBL] [Abstract][Full Text] [Related]
17. [Role of polyphenols in the low nutritive value of Vicia faba]. Villanueva MR; Martínez JA; Larralde J Arch Latinoam Nutr; 1987 Jun; 37(2):324-32. PubMed ID: 3455186 [TBL] [Abstract][Full Text] [Related]
18. Sucrose modifies growth and physiology in axenically grown Myriophyllum spicatum with potential effects on the response to pollutants. Nuttens A; Gross EM Environ Toxicol Chem; 2017 Apr; 36(4):969-975. PubMed ID: 27597637 [TBL] [Abstract][Full Text] [Related]
19. Shade tolerance as a key trait in invasion success of submerged macrophyte Koleszár G; Lukács BA; Nagy PT; Szabó S Ecol Evol; 2022 Sep; 12(9):e9306. PubMed ID: 36177112 [TBL] [Abstract][Full Text] [Related]
20. The effects of a pesticide mixture on aquatic ecosystems differing in trophic status: responses of the macrophyte Myriophyllum spicatum and the periphytic algal community. Wendt-Rasch L; Van den Brink PJ; Crum SJ; Woin P Ecotoxicol Environ Saf; 2004 Mar; 57(3):383-98. PubMed ID: 15041261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]