BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12523651)

  • 1. Regioselective nitration of phenol induced by catalytic antibodies.
    Ricoux R; Girgenti E; Sauriat-Dorizon H; Blanchard D; Mahy JP
    J Protein Chem; 2002 Oct; 21(7):473-7. PubMed ID: 12523651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microperoxidase 8 catalyzed nitration of phenol by nitrogen dioxide radicals.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Eur J Biochem; 2001 Jul; 268(13):3783-8. PubMed ID: 11432746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoabzymes: towards new biocatalysts for selective oxidations.
    Ricoux R; Sauriat-Dorizon H; Girgenti E; Blanchard D; Mahy JP
    J Immunol Methods; 2002 Nov; 269(1-2):39-57. PubMed ID: 12379351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New activities of a catalytic antibody with a peroxidase activity: formation of Fe(II)-RNO complexes and stereoselective oxidation of sulfides.
    Ricoux R; Lukowska E; Pezzotti F; Mahy JP
    Eur J Biochem; 2004 Apr; 271(7):1277-83. PubMed ID: 15030477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism.
    Osman AM; Koerts J; Boersma MG; Boeren S; Veeger C; Rietjens IM
    Eur J Biochem; 1996 Aug; 240(1):232-8. PubMed ID: 8797858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide.
    Vione D; Maurino V; Minero C; Borghesi D; Lucchiari M; Pelizzetti E
    Environ Sci Technol; 2003 Oct; 37(20):4635-41. PubMed ID: 14594372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrosation by peroxynitrite: use of phenol as a probe.
    Uppu RM; Lemercier JN; Squadrito GL; Zhang H; Bolzan RM; Pryor WA
    Arch Biochem Biophys; 1998 Oct; 358(1):1-16. PubMed ID: 9750159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System.
    Kong M; Zhang Y; Li Q; Dong R; Gao H
    J Microbiol Biotechnol; 2017 Feb; 27(2):297-305. PubMed ID: 27780953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of iron to manganese substitution on microperoxidase 8 catalysed peroxidase and cytochrome P450 type of catalysis.
    Primus JL; Boersma MG; Mandon D; Boeren S; Veeger C; Weiss R; Rietjens IM
    J Biol Inorg Chem; 1999 Jun; 4(3):274-83. PubMed ID: 10439072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H(2)O(2): a rapid kinetics study.
    Primus JL; Grunenwald S; Hagedoorn PL; Albrecht-Gary AM; Mandon D; Veeger C
    J Am Chem Soc; 2002 Feb; 124(7):1214-21. PubMed ID: 11841289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalently modified microperoxidases as heme-peptide models for peroxidases.
    Casella L; De Gioia L; Silvestri GF; Monzani E; Redaelli C; Roncone R; Santagostini L
    J Inorg Biochem; 2000 Apr; 79(1-4):31-40. PubMed ID: 10830844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MP8-dependent oxidative dehalogenation: evidence for the direct formation of 1,4-benzoquinone from 4-fluorophenol by a peroxidase-type of reaction pathway.
    Osman AM; Boeren S; Veeger C; Rietjens IM
    Chem Biol Interact; 1997 May; 104(2-3):147-64. PubMed ID: 9212781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metmyoglobin-catalyzed exogenous and endogenous tyrosine nitration by nitrite and hydrogen peroxide.
    Nicolis S; Monzani E; Roncone R; Gianelli L; Casella L
    Chemistry; 2004 May; 10(9):2281-90. PubMed ID: 15112218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of HRP-catalyzed nitrite oxidation by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation and nitration of mononitrophenols by a DyP-type peroxidase.
    Büttner E; Ullrich R; Strittmatter E; Piontek K; Plattner DA; Hofrichter M; Liers C
    Arch Biochem Biophys; 2015 May; 574():86-92. PubMed ID: 25796533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS), a peroxynitrite decomposition catalyst, catalyzes protein tyrosine nitration in the presence of hydrogen peroxide and nitrite.
    Zhang P; Ma L; Yang Z; Li H; Gao Z
    J Inorg Biochem; 2018 Jun; 183():9-17. PubMed ID: 29525695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of iron(II)-nitrosoalkane complexes: a new activity of microperoxidase 8.
    Ricoux R; Boucher JL; Mansuy D; Mahy JP
    Biochem Biophys Res Commun; 2000 Nov; 278(1):217-23. PubMed ID: 11071875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration.
    Castro L; Eiserich JP; Sweeney S; Radi R; Freeman BA
    Arch Biochem Biophys; 2004 Jan; 421(1):99-107. PubMed ID: 14678790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New aspects in the reaction mechanism of phenol with peroxynitrite: the role of phenoxy radicals.
    Daiber A; Mehl M; Ullrich V
    Nitric Oxide; 1998; 2(4):259-69. PubMed ID: 9851367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxynitrite reaction with heme proteins.
    Mehl M; Daiber A; Herold S; Shoun H; Ullrich V
    Nitric Oxide; 1999; 3(2):142-52. PubMed ID: 10369184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.