BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 12523665)

  • 1. Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins.
    Liao YH; Brown MB; Quader A; Martin GP
    Pharm Res; 2002 Dec; 19(12):1854-61. PubMed ID: 12523665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations.
    Liao YH; Brown MB; Martin GP
    Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying.
    Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomalt and its diastereomer mixtures as stabilizing excipients with freeze-dried lactate dehydrogenase.
    Tuderman AK; Strachan CJ; Juppo AM
    Int J Pharm; 2018 Mar; 538(1-2):287-295. PubMed ID: 29341910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme.
    Liao YH; Brown MB; Nazir T; Quader A; Martin GP
    Pharm Res; 2002 Dec; 19(12):1847-53. PubMed ID: 12523664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of drying methods and additives on structure and function of actin: mechanisms of dehydration-induced damage and its inhibition.
    Allison SD; Randolph TW; Manning MC; Middleton K; Davis A; Carpenter JF
    Arch Biochem Biophys; 1998 Oct; 358(1):171-81. PubMed ID: 9750178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Excipient Interactions on the State of the Freeze-Concentrate and Protein Stability.
    Jena S; Horn J; Suryanarayanan R; Friess W; Aksan A
    Pharm Res; 2017 Feb; 34(2):462-478. PubMed ID: 27981449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of storage stability of lyophilized actin using combinations of disaccharides and dextran.
    Allison SD; Manning MC; Randolph TW; Middleton K; Davis A; Carpenter JF
    J Pharm Sci; 2000 Feb; 89(2):199-214. PubMed ID: 10688749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix?
    Chang L; Shepherd D; Sun J; Ouellette D; Grant KL; Tang XC; Pikal MJ
    J Pharm Sci; 2005 Jul; 94(7):1427-44. PubMed ID: 15920775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying.
    Izutsu K; Kojima S
    J Pharm Pharmacol; 2002 Aug; 54(8):1033-9. PubMed ID: 12195816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose and hyaluronic acid coordinately stabilized freeze-dried pancreatic kininogenase.
    Zhang Y; Ji B; Ling P; Zhang T
    Eur J Pharm Biopharm; 2007 Jan; 65(1):18-25. PubMed ID: 16950608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations.
    Izutsu KI
    Adv Exp Med Biol; 2018; 1081():371-383. PubMed ID: 30288720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase.
    Peters BH; Leskinen JTT; Molnár F; Ketolainen J
    J Pharm Sci; 2015 Nov; 104(11):3710-3721. PubMed ID: 26305147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of a recombinant human epidermal growth factor parenteral formulation through freeze-drying.
    Santana H; Sotolongo J; González Y; Hernández G; Chinea G; Gerónimo H; Amarantes O; Beldarraín A; Páez R
    Biologicals; 2014 Nov; 42(6):322-33. PubMed ID: 25190208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ precipitation and vacuum drying of interferon alpha-2a: development of a single-step process for obtaining dry, stable protein formulation.
    Kumar V; Sharma VK; Kalonia DS
    Int J Pharm; 2009 Jan; 366(1-2):88-98. PubMed ID: 18824225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody.
    Cleland JL; Lam X; Kendrick B; Yang J; Yang TH; Overcashier D; Brooks D; Hsu C; Carpenter JF
    J Pharm Sci; 2001 Mar; 90(3):310-21. PubMed ID: 11170024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase.
    Larsen BS; Skytte J; Svagan AJ; Meng-Lund H; Grohganz H; Löbmann K
    Pharm Dev Technol; 2019 Mar; 24(3):323-328. PubMed ID: 29781745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectoine and Hydroxyectoine Stabilize Antibodies in Spray-Dried Formulations at Elevated Temperature and during a Freeze/Thaw Process.
    Nayak PK; Goode M; Chang DP; Rajagopal K
    Mol Pharm; 2020 Sep; 17(9):3291-3297. PubMed ID: 32672979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.