These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12523791)

  • 1. A model for predicting sediment-water partition of toxic chemicals in aquatic environments.
    Shimazu H; Ohnishi E; Ozaki N; Fukushima T; Nakasugi O
    Water Sci Technol; 2002; 46(11-12):437-42. PubMed ID: 12523791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations of nonlinear sorption of organic solutes with soil/sediment physicochemical properties.
    Yang K; Zhu L; Lou B; Chen B
    Chemosphere; 2005 Sep; 61(1):116-28. PubMed ID: 16157174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of phosphorus dynamics in aquatic sediments: II--examination of model performance.
    Wang H; Appan A; Gulliver JS
    Water Res; 2003 Sep; 37(16):3939-53. PubMed ID: 12909113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of phosphorus dynamics in aquatic sediments: I--model development.
    Wang H; Appan A; Gulliver JS
    Water Res; 2003 Sep; 37(16):3928-38. PubMed ID: 12909112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.
    Choi H; Al-Abed SR
    J Hazard Mater; 2009 Jun; 165(1-3):860-6. PubMed ID: 19059706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Description of adsorption of hydrophobic organic compounds on sediment using multi-component adsorption model.
    Quan X; Liu ZY; Xue DM; Zhao YZ; Yang FL
    J Environ Sci (China); 2002 Apr; 14(2):195-203. PubMed ID: 12046287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of imidazolium-based ionic liquids to aquatic sediments.
    Beaulieu JJ; Tank JL; Kopacz M
    Chemosphere; 2008 Jan; 70(7):1320-8. PubMed ID: 17850845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sense or no-sense of the sum parameter for water soluble "adsorbable organic halogens" (AOX) and "absorbed organic halogens" (AOX-S18) for the assessment of organohalogens in sludges and sediments.
    Müller G
    Chemosphere; 2003 Jul; 52(2):371-9. PubMed ID: 12738259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting organic carbon-water partitioning of hydrophobic organic chemicals in soils and sediments based on water solubility.
    Razzaque MM; Grathwohl P
    Water Res; 2008 Aug; 42(14):3775-80. PubMed ID: 18694582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsteady diffusional mass transfer at the sediment/water interface: Theory and significance for SOD measurement.
    Higashino M; Gantzer CJ; Stefan HG
    Water Res; 2004 Jan; 38(1):1-12. PubMed ID: 14630097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and transport of iodine species in sediments from the Savannah River and Hanford Sites.
    Hu Q; Zhao P; Moran JE; Seaman JC
    J Contam Hydrol; 2005 Jul; 78(3):185-205. PubMed ID: 16019109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials.
    Pignatello JJ; Lu Y; LeBoeuf EJ; Huang W; Song J; Xing B
    J Environ Qual; 2006; 35(4):1049-59. PubMed ID: 16738390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of dissolved organic carbon in aquatic sediment suspensions.
    Koelmans AA; Prevo L
    Water Res; 2003 May; 37(9):2217-22. PubMed ID: 12691907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lipids on the sorption of hydrophobic organic compounds on geosorbents: a case study using phenanthrene.
    Tremblay L; Kohl SD; Rice JA; Gagné JP
    Chemosphere; 2005 Mar; 58(11):1609-20. PubMed ID: 15694481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing kinetics of transport and transformation of selenium in water-sediment microcosm free from selenium contamination using a simple mathematical model.
    Fujita M; Ike M; Hashimoto R; Nakagawa T; Yamaguchi K; Soda SO
    Chemosphere; 2005 Feb; 58(6):705-14. PubMed ID: 15621184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of naphthoic acids and quinoline compounds to estuarine sediment.
    Burgos WD; Pisutpaisal N
    J Contam Hydrol; 2006 Mar; 84(3-4):107-26. PubMed ID: 16469412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sediment-water partitioning of inorganic mercury in estuaries.
    Turner A; Millward GE; Le Roux SM
    Environ Sci Technol; 2001 Dec; 35(23):4648-54. PubMed ID: 11770766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Fe2O3, organic matter and carbonate on photocatalytic degradation of lindane in the sediment from the Liao River, China.
    Quan X; Niu J; Chen S; Chen J; Zhao Y; Yang F
    Chemosphere; 2003 Sep; 52(10):1749-55. PubMed ID: 12871742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments.
    Wang S; Jin X; Bu Q; Zhou X; Wu F
    J Hazard Mater; 2006 Feb; 128(2-3):95-105. PubMed ID: 16181733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.