These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 12523839)

  • 1. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films.
    Tsuji H; Del Carpio CA
    Biomacromolecules; 2003; 4(1):7-11. PubMed ID: 12523839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic hydrolysis of poly(lactide)s: effects of molecular weight, L-lactide content, and enantiomeric and diastereoisomeric polymer blending.
    Tsuji H; Miyauchi S
    Biomacromolecules; 2001; 2(2):597-604. PubMed ID: 11749226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37 degrees C.
    Tsuji H; Ikarashi K
    Biomaterials; 2004 Nov; 25(24):5449-55. PubMed ID: 15142725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkaline and enzymatic degradation of L-lactide copolymers, 1. Amorphous-made films of L-lactide copolymers with D-lactide, glycolide, and epsilon-caprolactone.
    Tsuji H; Tezuka Y
    Macromol Biosci; 2005 Feb; 5(2):135-48. PubMed ID: 15729721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization.
    Bao RY; Yang W; Jiang WR; Liu ZY; Xie BH; Yang MB
    J Phys Chem B; 2013 Apr; 117(13):3667-74. PubMed ID: 23477609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(L-lactide).
    Tsuji H; Ishizaka T
    Int J Biol Macromol; 2001 Aug; 29(2):83-9. PubMed ID: 11518579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Stereocomplexation between Enantiomeric Comb-Shaped Cellulose-g-poly(L-lactide) Nanohybrids and Poly(D-lactide) from the Melt.
    Ma P; Jiang L; Xu P; Dong W; Chen M; Lemstra PJ
    Biomacromolecules; 2015 Nov; 16(11):3723-9. PubMed ID: 26444105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization behavior of asymmetric PLLA/PDLA blends.
    Sun J; Yu H; Zhuang X; Chen X; Jing X
    J Phys Chem B; 2011 Mar; 115(12):2864-9. PubMed ID: 21384937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.
    Bao J; Han L; Shan G; Bao Y; Pan P
    J Phys Chem B; 2015 Oct; 119(39):12689-98. PubMed ID: 26352621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide).
    Tsuji H; Sawada M; Bouapao L
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight.
    López-Rodríguez N; Martínez de Arenaza I; Meaurio E; Sarasua JR
    J Mech Behav Biomed Mater; 2014 Sep; 37():219-25. PubMed ID: 24951928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular weight dependence of the poly(L-lactide)/poly(D-lactide) Stereocomplex at the air-water interface.
    Duan Y; Liu J; Sato H; Zhang J; Tsuji H; Ozaki Y; Yan S
    Biomacromolecules; 2006 Oct; 7(10):2728-35. PubMed ID: 17025346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis.
    Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H
    Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y
    J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro hydrolysis of poly(l-lactide) crystalline residues as extended-chain crystallites: II. Effects of hydrolysis temperature.
    Tsuji H; Ikarashi K
    Biomacromolecules; 2004; 5(3):1021-8. PubMed ID: 15132696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern.
    Andersson SR; Hakkarainen M; Inkinen S; Södergård A; Albertsson AC
    Biomacromolecules; 2010 Apr; 11(4):1067-73. PubMed ID: 20201493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials.
    Tsuji H; Yamamoto S; Okumura A; Sugiura Y
    Biomacromolecules; 2010 Jan; 11(1):252-8. PubMed ID: 20000347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.