BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12523972)

  • 1. Coexpression of BiP increased antithrombotic hirudin production in recombinant Saccharomyces cerevisiae.
    Kim MD; Han KC; Kang HA; Rhee SK; Seo JH
    J Biotechnol; 2003 Feb; 101(1):81-7. PubMed ID: 12523972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae.
    Kim MD; Lee TH; Lim HK; Seo JH
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):259-62. PubMed ID: 15048590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal delta-integration.
    Kim MD; Rhee SK; Seo JH
    J Biotechnol; 2001 Jan; 85(1):41-8. PubMed ID: 11164961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hirudin variants production by genetic engineered microbial factory.
    Zhang J; Lan N
    Biotechnol Genet Eng Rev; 2018 Oct; 34(2):261-280. PubMed ID: 30095033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation and recovery of functions of Saccharomyces cerevisiae chaperone BiP/Kar2p after thermal insult.
    Seppä L; Makarow M
    Eukaryot Cell; 2005 Dec; 4(12):2008-16. PubMed ID: 16339719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High cell density cultivation of recombinant Escherichia coli for hirudin variant 1 production.
    Matsui T; Sato H; Yamamuro H; Misawa S; Shinzato N; Matsuda H; Takahashi J; Sato S
    J Biotechnol; 2008 Mar; 134(1-2):88-92. PubMed ID: 18294719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of calnexin deletion on the expression level of binding protein (BiP) under heat stress conditions in Saccharomyces cerevisiae.
    Zhang H; Hu B; Ji Y; Kato A; Song Y
    Cell Mol Biol Lett; 2008; 13(4):621-31. PubMed ID: 18661113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal proteolytic degradation of recombinant desulfato-hirudin and its mutants in the yeast Saccharomyces cerevisiae.
    Heim J; Takabayashi K; Meyhack B; Märki W; Pohlig G
    Eur J Biochem; 1994 Dec; 226(2):341-53. PubMed ID: 8001551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae.
    Choi ES; Sohn JH; Rhee SK
    Appl Microbiol Biotechnol; 1994 Dec; 42(4):587-94. PubMed ID: 7765734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of recombinant hirudin by high cell density fed-batch cultivations of a Saccharomyces cerevisiae strain: physiological considerations during the bioprocess design.
    Mendoza-Vega O; Hebert C; Brown SW
    J Biotechnol; 1994 Feb; 32(3):249-59. PubMed ID: 7764718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of GAP promoter variants on hirudin production, average plasmid copy number and cell growth in Saccharomyces cerevisiae.
    Janes M; Meyhack B; Zimmermann W; Hinnen A
    Curr Genet; 1990 Aug; 18(2):97-103. PubMed ID: 2225146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis.
    Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J
    Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of disulfide-linked hirudin dimer by in vitro folding.
    Chang JY; Grossenbacher H; Meyhack B; Maerki W
    FEBS Lett; 1993 Dec; 336(1):53-6. PubMed ID: 8262216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolded protein response-induced BiP/Kar2p production protects cell growth against accumulation of misfolded protein aggregates in the yeast endoplasmic reticulum.
    Umebayashi K; Hirata A; Horiuchi H; Ohta A; Takagi M
    Eur J Cell Biol; 1999 Oct; 78(10):726-38. PubMed ID: 10569245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of yeast proteases on hirudin expression in Saccharomyces cerevisiae.
    Pohlig G; Zimmermann W; Heim J
    Biomed Biochim Acta; 1991; 50(4-6):711-6. PubMed ID: 1801748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter.
    Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY
    Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lumenal domain of Sec63p stimulates the ATPase activity of BiP and mediates BiP recruitment to the translocon in Saccharomyces cerevisiae.
    Corsi AK; Schekman R
    J Cell Biol; 1997 Jun; 137(7):1483-93. PubMed ID: 9199165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae.
    Robinson AS; Bockhaus JA; Voegler AC; Wittrup KD
    J Biol Chem; 1996 Apr; 271(17):10017-22. PubMed ID: 8626555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell wall 1,6-beta-glucan synthesis in Saccharomyces cerevisiae depends on ER glucosidases I and II, and the molecular chaperone BiP/Kar2p.
    Simons JF; Ebersold M; Helenius A
    EMBO J; 1998 Jan; 17(2):396-405. PubMed ID: 9430631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha.
    van der Heide M; Hollenberg CP; van der Klei IJ; Veenhuis M
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):487-94. PubMed ID: 11954796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.