These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12524186)

  • 21. Post-thinning using Ar ion-milling system for transmission electron microscopy specimens prepared by focused ion beam system.
    Lee MH; Kim KH
    J Microsc; 2016 Mar; 261(3):243-8. PubMed ID: 26457668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopant mapping in thin FIB prepared silicon samples by Off-Axis Electron Holography.
    Pantzer A; Vakahy A; Eliyahou Z; Levi G; Horvitz D; Kohn A
    Ultramicroscopy; 2014 Mar; 138():36-45. PubMed ID: 24486529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel method for the plan-view TEM preparation of thin samples on brittle substrates by mechanical and ion beam thinning.
    Sáfrán G; Grenet T
    Microsc Res Tech; 2002 Feb; 56(4):308-14. PubMed ID: 11877808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation, amorphization, and recrystallization of ion bombarded Si(111) surfaces studied by in situ reflection electron microscopy and reflection high energy electron diffraction techniques.
    Claverie A; Beauvillain J; Fauré J; Vieu C; Jouffrey B
    Microsc Res Tech; 1992 Feb; 20(4):352-9. PubMed ID: 1498350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimized Ar(+)-ion milling procedure for TEM cross-section sample preparation.
    Dieterle L; Butz B; Müller E
    Ultramicroscopy; 2011 Nov; 111(11):1636-44. PubMed ID: 21979559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially varying chemical phase formation on silicon nano ripple by low energy mixed ions bombardment.
    Mukherjee J; Bhowmik D; Bhattacharyya G; Satpati B; Karmakar P
    J Phys Condens Matter; 2022 Jan; 34(13):. PubMed ID: 34996060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of TEM foils from Nb-10 a/o Si.
    Cockeram B; Jackson AG; Omlor RE; Srinivasan R; Weiss I
    Microsc Res Tech; 1992 Aug; 22(3):298-300. PubMed ID: 1504356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel technique for the preparation of thin films for cross-sectional transmission electron microscopy.
    Heuer JP; Howitt DG
    J Electron Microsc Tech; 1990 Jan; 14(1):79-82. PubMed ID: 2299422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gallium, neon and helium focused ion beam milling of thin films demonstrated for polymeric materials: study of implantation artifacts.
    Allen FI; Velez NR; Thayer RC; Patel NH; Jones MA; Meyers GF; Minor AM
    Nanoscale; 2019 Jan; 11(3):1403-1409. PubMed ID: 30604814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser-assisted sample preparation of silicon for high-resolution transmission electron microscopy.
    Sakaguchi N; Kozuka M; Ichinose H
    Microscopy (Oxf); 2015 Apr; 64(2):111-9. PubMed ID: 25556781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Photoluminescence of Silicon Nitride-Based ZnO Thin Film Developed with RF Magnetron Sputtering].
    Chen JH; Yao WQ; Zhu YF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Feb; 37(2):391-3. PubMed ID: 30264967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Method for Cross-sectional Transmission Electron Microscopy Specimen Preparation of Composite Materials Using a Dedicated Focused Ion Beam System.
    Yaguchi T; Kamino T; Ishitani T; Urao R
    Microsc Microanal; 1999 Sep; 5(5):365-370. PubMed ID: 10473682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of bombardment on optical properties during the deposition of silicon nitride by reactive ion-beam sputtering.
    Lambrinos MF; Valizadeh R; Colligon JS
    Appl Opt; 1996 Jul; 35(19):3620-6. PubMed ID: 21102756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular depth profiling of sucrose films: a comparative study of C60(n+) ions and traditional Cs(+) and O2(+) ions.
    Zhu Z; Nachimuthu P; Lea AS
    Anal Chem; 2009 Oct; 81(20):8272-9. PubMed ID: 19769372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of the FIB lift-out technique for TEM specimen preparation.
    Giannuzzi LA; Drown JL; Brown SR; Irwin RB; Stevie FA
    Microsc Res Tech; 1998 May; 41(4):285-90. PubMed ID: 9633946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimization of focused ion beam damage in nanostructured polymer thin films.
    Kim S; Jeong Park M; Balsara NP; Liu G; Minor AM
    Ultramicroscopy; 2011 Feb; 111(3):191-9. PubMed ID: 21333856
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redeposition effects in transmission electron microscope specimens of FeAl-WC composites prepared using a focused ion beam.
    Cairney JM; Munroe PR
    Micron; 2003; 34(2):97-107. PubMed ID: 12801542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cross-sectional sample preparation by focused ion beam: a review of ion-sample interaction.
    Ishitani T; Yaguchi T
    Microsc Res Tech; 1996 Nov; 35(4):320-33. PubMed ID: 8987026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of fullerene and large argon clusters for the molecular depth profiling of amino acid multilayers.
    Wehbe N; Mouhib T; Delcorte A; Bertrand P; Moellers R; Niehuis E; Houssiau L
    Anal Bioanal Chem; 2014 Jan; 406(1):201-11. PubMed ID: 24253407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-energy Ar+ and N+ ion beam induced chemical vapor deposition using hexamethyldisilazane for the formation of nitrogen containing SiC and carbon containing SiN films.
    Yoshimura S; Sugimoto S; Takeuchi T; Murai K; Kiuchi M
    PLoS One; 2021; 16(10):e0259216. PubMed ID: 34705881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.