These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 12524197)

  • 1. Holographic voltage profiling on 75 nm gate architecture CMOS devices.
    Thesen AE; Frost BG; Joy DC
    Ultramicroscopy; 2003 Apr; 94(3-4):277-81. PubMed ID: 12524197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope.
    Tobon-Maya H; Zapata-Valencia S; Zora-Guzmán E; Buitrago-Duque C; Garcia-Sucerquia J
    Appl Opt; 2021 Feb; 60(4):A205-A214. PubMed ID: 33690371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices.
    Wang YY; Kawasaki M; Bruley J; Gribelyuk M; Domenicucci A; Gaudiello J
    Ultramicroscopy; 2004 Nov; 101(2-4):63-72. PubMed ID: 15450653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of advanced electron holographic techniques and application to industrial materials and devices.
    Yamamoto K; Hirayama T; Tanji T
    Microscopy (Oxf); 2013 Jun; 62 Suppl 1():S29-41. PubMed ID: 23536696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission digital holographic microscopy based on a beam-splitter cube interferometer.
    Qu W; Bhattacharya K; Choo CO; Yu Y; Asundi A
    Appl Opt; 2009 May; 48(15):2778-83. PubMed ID: 19458724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample preparation for precise and quantitative electron holographic analysis of semiconductor devices.
    Han MG; Li J; Xie Q; Fejes P; Conner J; Taylor B; McCartney MR
    Microsc Microanal; 2006 Aug; 12(4):295-301. PubMed ID: 16842641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam.
    Wang ZG; Kato N; Sasaki K; Hirayama T; Saka H
    J Electron Microsc (Tokyo); 2004; 53(2):115-9. PubMed ID: 15180205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications.
    Parihar MS; Kranti A
    Nanotechnology; 2015 Apr; 26(14):145201. PubMed ID: 25771821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D-mapping of dopant distribution in deep sub micron CMOS devices by electron holography using adapted FIB-preparation.
    Lenk A; Lichte H; Muehle U
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):351-9. PubMed ID: 16123059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms.
    Indebetouw G; Tada Y; Rosen J; Brooker G
    Appl Opt; 2007 Feb; 46(6):993-1000. PubMed ID: 17279147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards automated electron holographic tomography for 3D mapping of electrostatic potentials.
    Wolf D; Lubk A; Lichte H; Friedrich H
    Ultramicroscopy; 2010 Apr; 110(5):390-9. PubMed ID: 20106597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-electron effects in non-overlapped multiple-gate silicon-on-insulator metal-oxide-semiconductor field-effect transistors.
    Lee W; Su P
    Nanotechnology; 2009 Feb; 20(6):065202. PubMed ID: 19417374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor.
    Fromherz P; Offenhäusser A; Vetter T; Weis J
    Science; 1991 May; 252(5010):1290-3. PubMed ID: 1925540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional parallel holographic micropatterning using a spatial light modulator.
    Jenness NJ; Wulff KD; Johannes MS; Padgett MJ; Cole DG; Clark RL
    Opt Express; 2008 Sep; 16(20):15942-8. PubMed ID: 18825231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.
    Mori Y; Nomura T
    Appl Opt; 2013 Jun; 52(16):3838-44. PubMed ID: 23736342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Issues of nanoelectronics: a possible roadmap.
    Wang KL
    J Nanosci Nanotechnol; 2002; 2(3-4):235-66. PubMed ID: 12908252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale imaging using deep ultraviolet digital holographic microscopy.
    Faridian A; Hopp D; Pedrini G; Eigenthaler U; Hirscher M; Osten W
    Opt Express; 2010 Jun; 18(13):14159-64. PubMed ID: 20588549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly controllable optical tweezers using dynamic electronic holograms.
    Yamamoto J; Iwai T
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2655-62. PubMed ID: 22039817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital holographic microscopy and focusing methods based on image sharpness.
    İlhan HA; Doğar M; Özcan M
    J Microsc; 2014 Sep; 255(3):138-49. PubMed ID: 24894875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.