BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 12524272)

  • 1. Near-critical phenomena in intracellular metabolite pools.
    Elf J; Paulsson J; Berg OG; Ehrenberg M
    Biophys J; 2003 Jan; 84(1):154-70. PubMed ID: 12524272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions.
    Grima R
    Phys Rev Lett; 2009 May; 102(21):218103. PubMed ID: 19519139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations of single- and multistep enzyme-catalyzed reaction sequences: effects of diffusion, cell size, enzyme fluctuations, colocalization, and segregation.
    Anderson JB; Anderson LE; Kussmann J
    J Chem Phys; 2010 Jul; 133(3):034104. PubMed ID: 20649305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical steady-state enzyme kinetics.
    Lorsch JR
    Methods Enzymol; 2014; 536():3-15. PubMed ID: 24423262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise slows the rate of Michaelis-Menten reactions.
    Van Dyken JD
    J Theor Biol; 2017 Oct; 430():21-31. PubMed ID: 28676416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic disorder in simple enzymatic reactions induces stochastic amplification of substrate.
    Gupta A; Milias-Argeitis A; Khammash M
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic theory of large-scale enzyme-reaction networks: finite copy number corrections to rate equation models.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2010 Nov; 133(19):195101. PubMed ID: 21090871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration profiles near an activated enzyme.
    Park S; Agmon N
    J Phys Chem B; 2008 Sep; 112(38):12104-14. PubMed ID: 18759406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
    Kumar A; Chatterjee S; Nandi M; Dua A
    J Chem Phys; 2016 Aug; 145(8):085103. PubMed ID: 27586952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact Product Formation Rates for Stochastic Enzyme Kinetics.
    Grima R; Leier A
    J Phys Chem B; 2017 Jan; 121(1):13-23. PubMed ID: 27959536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zero-order ultrasensitivity: a study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime.
    Jithinraj PK; Roy U; Gopalakrishnan M
    J Theor Biol; 2014 Mar; 344():1-11. PubMed ID: 24309434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.
    Bajzer Z; Strehler EE
    Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Michaelis-Menten relations for complex enzymatic networks.
    Kolomeisky AB
    J Chem Phys; 2011 Apr; 134(15):155101. PubMed ID: 21513417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule enzymology: stochastic Michaelis-Menten kinetics.
    Qian H; Elson EL
    Biophys Chem; 2002 Dec; 101-102():565-76. PubMed ID: 12488027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An alternative approach to Michaelis-Menten kinetics that is based on the renormalization group.
    Coluzzi B; Bersani AM; Bersani E
    Math Biosci; 2018 May; 299():28-50. PubMed ID: 29197510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
    Santos FA; Gadêlha H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062714. PubMed ID: 26764734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use and abuse of the quasi-steady-state approximation.
    Flach EH; Schnell S
    Syst Biol (Stevenage); 2006 Jul; 153(4):187-91. PubMed ID: 16986620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2011 Nov; 135(18):181103. PubMed ID: 22088045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.