BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 12524288)

  • 1. Osmotic properties of poly(ethylene glycols): quantitative features of brush and bulk scaling laws.
    Hansen PL; Cohen JA; Podgornik R; Parsegian VA
    Biophys J; 2003 Jan; 84(1):350-5. PubMed ID: 12524288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(oligo(ethylene glycol)acrylamide) brushes by surface initiated polymerization: effect of macromonomer chain length on brush growth and protein adsorption from blood plasma.
    Kizhakkedathu JN; Janzen J; Le Y; Kainthan RK; Brooks DE
    Langmuir; 2009 Apr; 25(6):3794-801. PubMed ID: 19708153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic constants of polymer-grafted lipid membranes.
    Marsh D
    Biophys J; 2001 Oct; 81(4):2154-62. PubMed ID: 11566786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins.
    Kiessling V; Tamm LK
    Biophys J; 2003 Jan; 84(1):408-18. PubMed ID: 12524294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol).
    Kenworthy AK; Hristova K; Needham D; McIntosh TJ
    Biophys J; 1995 May; 68(5):1921-36. PubMed ID: 7612834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers.
    Rex S; Zuckermann MJ; Lafleur M; Silvius JR
    Biophys J; 1998 Dec; 75(6):2900-14. PubMed ID: 9826611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elasticity of polymer vesicles by osmotic pressure: an intermediate theory between fluid membranes and solid shells.
    Tu ZC; Ge LQ; Li JB; Ou-Yang ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021806. PubMed ID: 16196596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation of poly(L-lysine)-graft-poly(ethylene glycol) molecular brushes in aqueous solution studied by small-angle neutron scattering.
    Feuz L; Strunz P; Geue T; Textor M; Borisov O
    Eur Phys J E Soft Matter; 2007 Jul; 23(3):237-45. PubMed ID: 17619817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liposomes tethered to omega-functional PEG brushes and induced formation of PEG brush supported planar lipid bilayers.
    Ye Q; Konradi R; Textor M; Reimhult E
    Langmuir; 2009 Dec; 25(23):13534-9. PubMed ID: 19736981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density.
    Lee H; Larson RG
    Biomacromolecules; 2016 May; 17(5):1757-65. PubMed ID: 27046506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of individual flexible polymers into a nanoscopic protein pore.
    Movileanu L; Cheley S; Bayley H
    Biophys J; 2003 Aug; 85(2):897-910. PubMed ID: 12885637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers.
    Zdyrko B; Varshney SK; Luzinov I
    Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.
    Emilsson G; Schoch RL; Feuz L; Höök F; Lim RY; Dahlin AB
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7505-15. PubMed ID: 25812004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water is a poor solvent for densely grafted poly(ethylene oxide) chains: a conclusion drawn from a self-consistent field theory-based analysis of neutron reflectivity and surface pressure-area isotherm data.
    Lee H; Kim DH; Witte KN; Ohn K; Choi J; Akgun B; Satija S; Won YY
    J Phys Chem B; 2012 Jun; 116(24):7367-78. PubMed ID: 22616550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling and mean-field theories applied to polymer brushes.
    Marsh D
    Biophys J; 2004 Apr; 86(4):2630-3. PubMed ID: 15041698
    [No Abstract]   [Full Text] [Related]  

  • 16. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes.
    Needham D; McIntosh TJ; Lasic DD
    Biochim Biophys Acta; 1992 Jul; 1108(1):40-8. PubMed ID: 1643080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid membrane expansion and micelle formation by polymer-grafted lipids: scaling with polymer length studied by spin-label electron spin resonance.
    Montesano G; Bartucci R; Belsito S; Marsh D; Sportelli L
    Biophys J; 2001 Mar; 80(3):1372-83. PubMed ID: 11222298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Into the polymer brush regime through the "grafting-to" method: densely polymer-grafted rodlike viruses with an unusual nematic liquid crystal behavior.
    Zan T; Wu F; Pei X; Jia S; Zhang R; Wu S; Niu Z; Zhang Z
    Soft Matter; 2016 Jan; 12(3):798-805. PubMed ID: 26531814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid and air-stable lipopolymer membranes for biosensor applications.
    Albertorio F; Diaz AJ; Yang T; Chapa VA; Kataoka S; Castellana ET; Cremer PS
    Langmuir; 2005 Aug; 21(16):7476-82. PubMed ID: 16042482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of human serum albumin with membranes containing polymer-grafted lipids: spin-label ESR studies in the mushroom and brush regimes.
    Bartucci R; Pantusa M; Marsh D; Sportelli L
    Biochim Biophys Acta; 2002 Aug; 1564(1):237-42. PubMed ID: 12101018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.