BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 12524314)

  • 21. Analysis of Ion Transport through a Single Channel of Gramicidin A in Bilayer Lipid Membranes.
    Kubota S; Shirai O; Kitazumi Y; Kano K
    Anal Sci; 2016; 32(2):189-92. PubMed ID: 26860564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supported membrane nanodevices.
    Anrather D; Smetazko M; Saba M; Alguel Y; Schalkhammer T
    J Nanosci Nanotechnol; 2004; 4(1-2):1-22. PubMed ID: 15112538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single molecule methods for monitoring changes in bilayer elastic properties.
    Ingolfson H; Kapoor R; Collingwood SA; Andersen OS
    J Vis Exp; 2008 Nov; (21):. PubMed ID: 19066527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II
    Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-channel recordings of gramicidin at agarose-supported bilayer lipid membranes formed by the tip-dip and painting methods.
    Matsuno Y; Osono C; Hirano A; Sugawara M
    Anal Sci; 2004 Aug; 20(8):1217-21. PubMed ID: 15352514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial cell based on lipid hollow polyelectrolyte microcapsules: channel reconstruction and membrane potential measurement.
    Tiourina OP; Radtchenko I; Sukhorukov GB; Möhwald H
    J Membr Biol; 2002 Nov; 190(1):9-16. PubMed ID: 12422268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid bilayer microarray for parallel recording of transmembrane ion currents.
    Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S
    Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness.
    Martinac B; Hamill OP
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4308-12. PubMed ID: 11904391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray scattering with momentum transfer in the plane of membrane. Application to gramicidin organization.
    He K; Ludtke SJ; Wu Y; Huang HW
    Biophys J; 1993 Jan; 64(1):157-62. PubMed ID: 7679294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels.
    Quist AP; Chand A; Ramachandran S; Daraio C; Jin S; Lal R
    Langmuir; 2007 Jan; 23(3):1375-80. PubMed ID: 17241061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Closed state of gramicidin channel detected by X-ray in-plane scattering.
    He K; Ludtke SJ; Wu Y; Huang HW; Andersen OS; Greathouse D; Koeppe RE
    Biophys Chem; 1994 Feb; 49(1):83-9. PubMed ID: 7510532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Ion channels of various types induced in lipid membranes by gramicidin A derivatives carrying a cationic sequence at their C-termini].
    Stoilova TB; Dutseva EA; Pashkovskaia AA; Sychev SV; Koval'chuk SI; Sobko AA; Egorova NS; Kotova EA; Antonenko IuN; Surovoi AIu; Ivanov VT
    Bioorg Khim; 2007; 33(5):511-9. PubMed ID: 18050656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport.
    Chiu SW; Subramaniam S; Jakobsson E
    Biophys J; 1999 Apr; 76(4):1939-50. PubMed ID: 10096892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
    Baştuğ T; Patra SM; Kuyucak S
    Chem Phys Lipids; 2006 Jun; 141(1-2):197-204. PubMed ID: 16600199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tryptophan contributions to the empirical free-energy profile in gramicidin A/M heterodimer channels.
    Durrant JD; Caywood D; Busath DD
    Biophys J; 2006 Nov; 91(9):3230-41. PubMed ID: 16861266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solvent drag across gramicidin channels demonstrated by microelectrodes.
    Pohl P; Saparov SM
    Biophys J; 2000 May; 78(5):2426-34. PubMed ID: 10777738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Desformylgramicidin: a model channel with an extremely high water permeability.
    Saparov SM; Antonenko YN; Koeppe RE; Pohl P
    Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Probing single-molecule protein conformational dynamics.
    Lu HP
    Acc Chem Res; 2005 Jul; 38(7):557-65. PubMed ID: 16028890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impedance analysis of phosphatidylcholine membranes modified with gramicidin D.
    Naumowicz M; Figaszewski Z
    Bioelectrochemistry; 2003 Oct; 61(1-2):21-7. PubMed ID: 14642906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.