BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 12524320)

  • 21. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q.
    Misra S; Govindjee R; Ebrey TG; Chen N; Ma JX; Crouch RK
    Biochemistry; 1997 Apr; 36(16):4875-83. PubMed ID: 9125508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong bending of purple membranes in the M-state.
    Porschke D
    J Mol Biol; 2003 Aug; 331(3):667-79. PubMed ID: 12899836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartic acid 85 in bacteriorhodopsin functions both as proton acceptor and negative counterion to the Schiff base.
    Subramaniam S; Greenhalgh DA; Khorana HG
    J Biol Chem; 1992 Dec; 267(36):25730-3. PubMed ID: 1464589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arginine-82 regulates the pKa of the group responsible for the light-driven proton release in bacteriorhodopsin.
    Govindjee R; Misra S; Balashov SP; Ebrey TG; Crouch RK; Menick DR
    Biophys J; 1996 Aug; 71(2):1011-23. PubMed ID: 8842238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton transfer dynamics on the surface of the late M state of bacteriorhodopsin.
    Nachliel E; Gutman M; Tittor J; Oesterhelt D
    Biophys J; 2002 Jul; 83(1):416-26. PubMed ID: 12080130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origins of deuterium kinetic isotope effects on the proton transfers of the bacteriorhodopsin photocycle.
    Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2000 Feb; 39(5):938-45. PubMed ID: 10653637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of introducing different carboxylate-containing side chains at position 85 on chromophore formation and proton transport in bacteriorhodopsin.
    Greenhalgh DA; Subramaniam S; Alexiev U; Otto H; Heyn MP; Khorana HG
    J Biol Chem; 1992 Dec; 267(36):25734-8. PubMed ID: 1361187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of the integral membrane proton pump, bacteriorhodopsin, by purple membrane lipids of Halobacterium halobium.
    Mukhopadhyay AK; Dracheva S; Bose S; Hendler RW
    Biochemistry; 1996 Jul; 35(28):9245-52. PubMed ID: 8703930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship of proton uptake on the cytoplasmic surface and reisomerization of the retinal in the bacteriorhodopsin photocycle: an attempt to understand the complex kinetics of the pH changes and the N and O intermediates.
    Cao Y; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1993 Sep; 32(38):10239-48. PubMed ID: 8399152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Culture temperature affects the molecular motion of bacteriorhodopsin within the purple membrane.
    Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N
    Chem Pharm Bull (Tokyo); 1996 Mar; 44(3):473-6. PubMed ID: 8882448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin.
    Kuo CL; Chu LK
    Bioelectrochemistry; 2014 Oct; 99():1-7. PubMed ID: 24935522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytoplasmic surface structures of bacteriorhodopsin modified by site-directed mutations and cation binding as revealed by 13C NMR.
    Yonebayashi K; Yamaguchi S; Tuzi S; Saitô H
    Eur Biophys J; 2003 Mar; 32(1):1-11. PubMed ID: 12632201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversal of the surface charge asymmetry in purple membrane due to single amino acid substitutions.
    Hsu KC; Rayfield GW; Needleman R
    Biophys J; 1996 May; 70(5):2358-65. PubMed ID: 9172760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Switch from conventional to distributed kinetics in the bacteriorhodopsin photocycle.
    Dioumaev AK; Lanyi JK
    Biochemistry; 2008 Oct; 47(42):11125-33. PubMed ID: 18821776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pH-dependent bending in and out of purple membranes comprising BR-D85T.
    Baumann RP; Eussner J; Hampp N
    Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycocardiolipin modulates the surface interaction of the proton pumped by bacteriorhodopsin in purple membrane preparations.
    Corcelli A; Lobasso S; Saponetti MS; Leopold A; Dencher NA
    Biochim Biophys Acta; 2007 Sep; 1768(9):2157-63. PubMed ID: 17669358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The nature of thermal transitions in purple membranes from Halobacterium halobium.
    Shnyrov VL; Azuaga AI; Mateo PL
    Biochem Soc Trans; 1994 Aug; 22(3):367S. PubMed ID: 7821619
    [No Abstract]   [Full Text] [Related]  

  • 39. Bacteriorhodopsin's intramolecular proton-release pathway consists of a hydrogen-bonded network.
    Rammelsberg R; Huhn G; Lübben M; Gerwert K
    Biochemistry; 1998 Apr; 37(14):5001-9. PubMed ID: 9538019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
    Watanabe HC; Ishikura T; Yamato T
    Proteins; 2009 Apr; 75(1):53-61. PubMed ID: 18767148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.