These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 12524545)

  • 41. NR2A-containing NMDA receptors depress glutamatergic synaptic transmission and evoked-dopamine release in the mouse striatum.
    Schotanus SM; Chergui K
    J Neurochem; 2008 Aug; 106(4):1758-65. PubMed ID: 18540994
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional contributions of synaptically localized NR2B subunits of the NMDA receptor to synaptic transmission and long-term potentiation in the adult mouse CNS.
    Miwa H; Fukaya M; Watabe AM; Watanabe M; Manabe T
    J Physiol; 2008 May; 586(10):2539-50. PubMed ID: 18372311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition.
    Chen N; Moshaver A; Raymond LA
    Mol Pharmacol; 1997 Jun; 51(6):1015-23. PubMed ID: 9187268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The NMDA receptor gating machine: lessons from single channels.
    Popescu G; Auerbach A
    Neuroscientist; 2004 Jun; 10(3):192-8. PubMed ID: 15155058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chimeric Glutamate Receptor Subunits Reveal the Transmembrane Domain Is Sufficient for NMDA Receptor Pore Properties but Some Positive Allosteric Modulators Require Additional Domains.
    Wilding TJ; Lopez MN; Huettner JE
    J Neurosci; 2016 Aug; 36(34):8815-25. PubMed ID: 27559165
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protons trap NR1/NR2B NMDA receptors in a nonconducting state.
    Banke TG; Dravid SM; Traynelis SF
    J Neurosci; 2005 Jan; 25(1):42-51. PubMed ID: 15634765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate.
    Chen YS; Tu YC; Lai YC; Liu E; Yang YC; Kuo CC
    J Neurochem; 2020 Jun; 153(5):549-566. PubMed ID: 31821563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synaptic and molecular mechanisms of glutamatergic synapses in pain and memory.
    Zhuo M
    Sheng Li Xue Bao; 2003 Feb; 55(1):1-8. PubMed ID: 12598926
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glutamate but not glycine agonist affinity for NMDA receptors is influenced by small cations.
    Nahum-Levy R; Tam E; Shavit S; Benveniste M
    J Neurosci; 2002 Apr; 22(7):2550-60. PubMed ID: 11923420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit.
    Laube B; Hirai H; Sturgess M; Betz H; Kuhse J
    Neuron; 1997 Mar; 18(3):493-503. PubMed ID: 9115742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glycine-dependent activation of NMDA receptors.
    Cummings KA; Popescu GK
    J Gen Physiol; 2015 Jun; 145(6):513-27. PubMed ID: 25964432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits.
    Schorge S; Elenes S; Colquhoun D
    J Physiol; 2005 Dec; 569(Pt 2):395-418. PubMed ID: 16223763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionary trace analysis of ionotropic glutamate receptor sequences and modeling the interactions of agonists with different NMDA receptor subunits.
    Blaise MC; Sowdhamini R; Rao MR; Pradhan N
    J Mol Model; 2004 Dec; 10(5-6):305-16. PubMed ID: 15597199
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for a tetrameric structure of recombinant NMDA receptors.
    Laube B; Kuhse J; Betz H
    J Neurosci; 1998 Apr; 18(8):2954-61. PubMed ID: 9526012
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors.
    Horak M; Vlcek K; Petrovic M; Chodounska H; Vyklicky L
    J Neurosci; 2004 Nov; 24(46):10318-25. PubMed ID: 15548645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time and space profiling of NMDA receptor co-agonist functions.
    Mothet JP; Le Bail M; Billard JM
    J Neurochem; 2015 Oct; 135(2):210-25. PubMed ID: 26088787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A structurally derived model of subunit-dependent NMDA receptor function.
    Gibb AJ; Ogden KK; McDaniel MJ; Vance KM; Kell SA; Butch C; Burger P; Liotta DC; Traynelis SF
    J Physiol; 2018 Sep; 596(17):4057-4089. PubMed ID: 29917241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites.
    Maolanon AR; Risgaard R; Wang SY; Snoep Y; Papangelis A; Yi F; Holley D; Barslund AF; Svenstrup N; Hansen KB; Clausen RP
    ACS Chem Neurosci; 2017 Aug; 8(8):1681-1687. PubMed ID: 28514141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in agonist concentration dependence that are a function of duration of exposure suggest N-methyl-D-aspartate receptor nonsaturation during synaptic stimulation.
    Chen N; Ren J; Raymond LA; Murphy TH
    Mol Pharmacol; 2001 Feb; 59(2):212-9. PubMed ID: 11160855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative analysis of inhibitory effects of caged ligands for the NMDA receptor.
    Maier W; Corrie JE; Papageorgiou G; Laube B; Grewer C
    J Neurosci Methods; 2005 Mar; 142(1):1-9. PubMed ID: 15652611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.