BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12524616)

  • 1. Crosslinking of fibrinogen and fibronectin by free radicals: a possible initial step in adhesion formation in osteoarthritis of the temporomandibular joint.
    Dijkgraaf LC; Zardeneta G; Cordewener FW; Liem RS; Schmitz JP; de Bont LG; Milam SB
    J Oral Maxillofac Surg; 2003 Jan; 61(1):101-11. PubMed ID: 12524616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical damage in facsimile synovium: correlation with adhesion formation in osteoarthritic TMJs.
    Sheets DW; Okamoto T; Dijkgraaf LC; Milam SB; Schmitz JP; Zardeneta G
    J Prosthodont; 2006; 15(1):9-19. PubMed ID: 16433646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the collagen I and fibronectin of temporomandibular joint synovial fluid and discs.
    Natiella JR; Burch L; Fries KM; Upton LG; Edsberg LE
    J Oral Maxillofac Surg; 2009 Jan; 67(1):105-13. PubMed ID: 19070755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals.
    Borsarelli CD; Falomir-Lockhart LJ; Ostatná V; Fauerbach JA; Hsiao HH; Urlaub H; Paleček E; Jares-Erijman EA; Jovin TM
    Free Radic Biol Med; 2012 Aug; 53(4):1004-15. PubMed ID: 22771470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-dependent generation of free radicals: plausible mechanisms in the progressive deterioration of the temporomandibular joint.
    Zardeneta G; Milam SB; Schmitz JP
    J Oral Maxillofac Surg; 2000 Mar; 58(3):302-8; discussion 309. PubMed ID: 10716113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function.
    Yudoh K; Nguyen vT; Nakamura H; Hongo-Masuko K; Kato T; Nishioka K
    Arthritis Res Ther; 2005; 7(2):R380-91. PubMed ID: 15743486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinking of DNA and proteins induced by protein hydroperoxides.
    Gebicki S; Gebicki JM
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):629-36. PubMed ID: 10051432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant.
    Elvin CM; Brownlee AG; Huson MG; Tebb TA; Kim M; Lyons RE; Vuocolo T; Liyou NE; Hughes TC; Ramshaw JA; Werkmeister JA
    Biomaterials; 2009 Apr; 30(11):2059-65. PubMed ID: 19147224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities.
    Wang X; Wu Z; Song G; Wang H; Long M; Cai S
    Clin Hemorheol Microcirc; 1999; 21(2):137-46. PubMed ID: 10599597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products.
    Gracanin M; Hawkins CL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interaction of reactive oxygen and nitrogen species with proteins].
    Ponczek MB; Wachowicz B
    Postepy Biochem; 2005; 51(2):140-5. PubMed ID: 16209351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.
    Stadtman ER; Levine RL
    Amino Acids; 2003 Dec; 25(3-4):207-18. PubMed ID: 14661084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between temporomandibular joint synovitis and adhesions: pathogenic mechanisms and clinical implications for surgical management.
    Israel HA; Langevin CJ; Singer MD; Behrman DA
    J Oral Maxillofac Surg; 2006 Jul; 64(7):1066-74. PubMed ID: 16781339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic light scattering studies on hydrodynamic properties of fibrinogen-fibronectin complex.
    Nagamatsu K; Komori M; Kuroda S; Tanaka K
    J Biomol Struct Dyn; 1992 Feb; 9(4):807-20. PubMed ID: 1616632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology and pathophysiology of nitrosative and oxidative stress in osteoarthritic joint destruction.
    Ziskoven C; Jäger M; Kircher J; Patzer T; Bloch W; Brixius K; Krauspe R
    Can J Physiol Pharmacol; 2011 Jul; 89(7):455-66. PubMed ID: 21793696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxic effect of formaldehyde with free radicals via increment of cellular reactive oxygen species.
    Saito Y; Nishio K; Yoshida Y; Niki E
    Toxicology; 2005 Jun; 210(2-3):235-45. PubMed ID: 15840437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical-induced fibrinogen coagulation: modulation of neofibe formation by concentration, pH and temperature.
    Karpel R; Marx G; Chevion M
    Isr J Med Sci; 1991 Feb; 27(2):61-6. PubMed ID: 1900814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free radicals and low-level photon emission in human pathogenesis: state of the art.
    Van Wijk R; Van Wijk EP; Wiegant FA; Ives J
    Indian J Exp Biol; 2008 May; 46(5):273-309. PubMed ID: 18697612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of colloidal and surface properties of Mytilus edulis foot protein 1 in the presence of an oxidation (NaIO4) or a complex-binding (Cu2+) agent.
    Hedlund J; Andersson M; Fant C; Bitton R; Bianco-Peled H; Elwing H; Berglin M
    Biomacromolecules; 2009 Apr; 10(4):845-9. PubMed ID: 19209903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.