These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 12525701)

  • 1. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels.
    Rohács T; Lopes CM; Jin T; Ramdya PP; Molnár Z; Logothetis DE
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):745-50. PubMed ID: 12525701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels.
    Shumilina E; Klöcker N; Korniychuk G; Rapedius M; Lang F; Baukrowitz T
    J Physiol; 2006 Sep; 575(Pt 2):433-42. PubMed ID: 16777940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels.
    Logothetis DE; Jin T; Lupyan D; Rosenhouse-Dantsker A
    Pflugers Arch; 2007 Oct; 455(1):83-95. PubMed ID: 17520276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long chain CoA esters as competitive antagonists of phosphatidylinositol 4,5-bisphosphate activation in Kir channels.
    Rapedius M; Soom M; Shumilina E; Schulze D; Schönherr R; Kirsch C; Lang F; Tucker SJ; Baukrowitz T
    J Biol Chem; 2005 Sep; 280(35):30760-7. PubMed ID: 15980413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
    Zhang H; He C; Yan X; Mirshahi T; Logothetis DE
    Nat Cell Biol; 1999 Jul; 1(3):183-8. PubMed ID: 10559906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pore helix is involved in stabilizing the open state of inwardly rectifying K+ channels.
    Alagem N; Yesylevskyy S; Reuveny E
    Biophys J; 2003 Jul; 85(1):300-12. PubMed ID: 12829485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cardiac inwardly rectifying potassium channels by membrane lipid metabolism.
    Takano M; Kuratomi S
    Prog Biophys Mol Biol; 2003 Jan; 81(1):67-79. PubMed ID: 12475570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturated and cis/trans unsaturated acyl CoA esters differentially regulate wild-type and polymorphic beta-cell ATP-sensitive K+ channels.
    Riedel MJ; Light PE
    Diabetes; 2005 Jul; 54(7):2070-9. PubMed ID: 15983208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inwardly rectifying potassium channels: their structure, function, and physiological roles.
    Hibino H; Inanobe A; Furutani K; Murakami S; Findlay I; Kurachi Y
    Physiol Rev; 2010 Jan; 90(1):291-366. PubMed ID: 20086079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins.
    Krapivinsky G; Gordon EA; Wickman K; Velimirović B; Krapivinsky L; Clapham DE
    Nature; 1995 Mar; 374(6518):135-41. PubMed ID: 7877685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)).
    Rosenhouse-Dantsker A; Noskov S; Han H; Adney SK; Tang QY; Rodríguez-Menchaca AA; Kowalsky GB; Petrou VI; Osborn CV; Logothetis DE; Levitan I
    J Biol Chem; 2012 Nov; 287(48):40266-78. PubMed ID: 22995912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of inwardly rectifying potassium (Kir) channels by phosphatidylinosital-4,5-bisphosphate (PIP2): interaction with other regulatory ligands.
    Xie LH; John SA; Ribalet B; Weiss JN
    Prog Biophys Mol Biol; 2007 Jul; 94(3):320-35. PubMed ID: 16837026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides.
    Rohács T; Chen J; Prestwich GD; Logothetis DE
    J Biol Chem; 1999 Dec; 274(51):36065-72. PubMed ID: 10593888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inwardly rectifying potassium channels: their molecular heterogeneity and function.
    Isomoto S; Kondo C; Kurachi Y
    Jpn J Physiol; 1997 Feb; 47(1):11-39. PubMed ID: 9159640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.
    Raab-Graham KF; Vandenberg CA
    J Biol Chem; 1998 Jul; 273(31):19699-707. PubMed ID: 9677399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.
    Kubo Y; Reuveny E; Slesinger PA; Jan YN; Jan LY
    Nature; 1993 Aug; 364(6440):802-6. PubMed ID: 8355805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland.
    Gregerson KA; Flagg TP; O'Neill TJ; Anderson M; Lauring O; Horel JS; Welling PA
    Endocrinology; 2001 Jul; 142(7):2820-32. PubMed ID: 11416001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
    Wischmeyer E; Döring F; Wischmeyer E; Spauschus A; Thomzig A; Veh R; Karschin A
    Mol Cell Neurosci; 1997; 9(3):194-206. PubMed ID: 9245502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short variable sequence acquired in evolution enables selective inhibition of various inward-rectifier K+ channels.
    Ramu Y; Klem AM; Lu Z
    Biochemistry; 2004 Aug; 43(33):10701-9. PubMed ID: 15311931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of phosphoinositide binding to K(+) channel subunits using a protein-lipid overlay assay.
    Thomas AM; Tinker A
    Methods Mol Biol; 2008; 491():103-11. PubMed ID: 18998087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.