These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12525863)

  • 1. Different metabolic properties of mitochondrial oxidative phosphorylation in different cell types--important implications for mitochondrial cytopathies.
    Kunz WS
    Exp Physiol; 2003 Jan; 88(1):149-54. PubMed ID: 12525863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered expression of the adenine nucleotide translocase isoforms and decreased ATP synthase activity in skeletal muscle mitochondria in heart failure.
    Rosca MG; Okere IA; Sharma N; Stanley WC; Recchia FA; Hoppel CL
    J Mol Cell Cardiol; 2009 Jun; 46(6):927-35. PubMed ID: 19233197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory upregulation of respiratory chain complexes III and IV in isolated deficiency of ATP synthase due to TMEM70 mutation.
    Havlíčková Karbanová V; Cížková Vrbacká A; Hejzlarová K; Nůsková H; Stránecký V; Potocká A; Kmoch S; Houštěk J
    Biochim Biophys Acta; 2012 Jul; 1817(7):1037-43. PubMed ID: 22433607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosome recycling defects modify the balance between the synthesis and assembly of specific subunits of the oxidative phosphorylation complexes in yeast mitochondria.
    Ostojić J; Panozzo C; Bourand-Plantefol A; Herbert CJ; Dujardin G; Bonnefoy N
    Nucleic Acids Res; 2016 Jul; 44(12):5785-97. PubMed ID: 27257059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions.
    Pickrell AM; Fukui H; Wang X; Pinto M; Moraes CT
    J Neurosci; 2011 Jul; 31(27):9895-904. PubMed ID: 21734281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator.
    Atlante A; Amadoro G; Bobba A; de Bari L; Corsetti V; Pappalardo G; Marra E; Calissano P; Passarella S
    Biochim Biophys Acta; 2008 Oct; 1777(10):1289-300. PubMed ID: 18725189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of oxidative phosphorylation genes in patients with Alzheimer's disease: implications for early mitochondrial dysfunction and oxidative damage.
    Manczak M; Park BS; Jung Y; Reddy PH
    Neuromolecular Med; 2004; 5(2):147-62. PubMed ID: 15075441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic control of oxidative phosphorylation and experimental models of defects.
    Trounce I
    Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of acclimation temperature on mitochondrial DNA, RNA, and enzymes in skeletal muscle.
    Battersby BJ; Moyes CD
    Am J Physiol; 1998 Sep; 275(3):R905-12. PubMed ID: 9728090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of mitochondrial translational regulation.
    Fontanesi F
    IUBMB Life; 2013 May; 65(5):397-408. PubMed ID: 23554047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The power of yeast to model diseases of the powerhouse of the cell.
    Baile MG; Claypool SM
    Front Biosci (Landmark Ed); 2013 Jan; 18(1):241-78. PubMed ID: 23276920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific differences in mitochondrial activity and biogenesis.
    Fernández-Vizarra E; Enríquez JA; Pérez-Martos A; Montoya J; Fernández-Silva P
    Mitochondrion; 2011 Jan; 11(1):207-13. PubMed ID: 20933104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase.
    Medeiros DM; Jennings D
    J Bioenerg Biomembr; 2002 Oct; 34(5):389-95. PubMed ID: 12539966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes.
    Figueroa-Martínez F; Vázquez-Acevedo M; Cortés-Hernández P; García-Trejo JJ; Davidson E; King MP; González-Halphen D
    Mitochondrion; 2011 Jan; 11(1):147-54. PubMed ID: 20854934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ATP synthase disorders: molecular mechanisms and the quest for curative therapeutic approaches.
    Kucharczyk R; Zick M; Bietenhader M; Rak M; Couplan E; Blondel M; Caubet SD; di Rago JP
    Biochim Biophys Acta; 2009 Jan; 1793(1):186-99. PubMed ID: 18620007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of tyrosine-phosphorylated proteins of the mitochondrial oxidative phosphorylation machinery.
    Augereau O; Claverol S; Boudes N; Basurko MJ; Bonneu M; Rossignol R; Mazat JP; Letellier T; Dachary-Prigent J
    Cell Mol Life Sci; 2005 Jul; 62(13):1478-88. PubMed ID: 15924266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of steroid hormones on the transcription of genes encoding enzymes of oxidative phosphorylation.
    Scheller K; Sekeris CE
    Exp Physiol; 2003 Jan; 88(1):129-40. PubMed ID: 12525861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel role of ATPase subunit C targeting peptides beyond mitochondrial protein import.
    Vives-Bauza C; Magrané J; Andreu AL; Manfredi G
    Mol Biol Cell; 2010 Jan; 21(1):131-9. PubMed ID: 19889836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of mitochondria: their organization and disorders.
    Ozawa T; Tanaka M; Suzuki H; Nishikimi M
    Brain Dev; 1987; 9(2):76-81. PubMed ID: 2888415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters.
    Gajewski CD; Yang L; Schon EA; Manfredi G
    Mol Biol Cell; 2003 Sep; 14(9):3628-35. PubMed ID: 12972552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.