These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1252629)

  • 1. Aquatic insects as biological monitors of heavy metal pollution.
    Nehring RB
    Bull Environ Contam Toxicol; 1976 Feb; 15(2):147-54. PubMed ID: 1252629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.
    Scheibener SA; Richardi VS; Buchwalter DB
    Aquat Toxicol; 2016 Feb; 171():20-9. PubMed ID: 26730725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to copper increases hypoxia sensitivity and decreases upper thermal tolerance of giant salmonfly nymphs (Pteronarcys californica).
    Frakes JI; Malison RL; Sydor MJ; Arthur Woods H
    J Insect Physiol; 2022; 143():104455. PubMed ID: 36368599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A statistical view of heavy metal pollution index of river sediment.
    Nishida H; Suzuki S
    Bull Environ Contam Toxicol; 1984 May; 32(5):503-9. PubMed ID: 6733296
    [No Abstract]   [Full Text] [Related]  

  • 6. Axopodial degradation in the heliozoon Raphidiophrys contractilis: a novel bioassay system for detecting heavy metal toxicity in an aquatic environment.
    Khan SM; Yoshimura C; Arikawa M; Omura G; Nishiyama S; Suetomo Y; Kakuta S; Suzaki T
    Environ Sci; 2006; 13(4):193-200. PubMed ID: 17095991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of heavy metal composition in long-term waste water burdened soils].
    Neumayr V; Aurand K; von Kunowski J; Milde G
    Schriftenr Ver Wasser Boden Lufthyg; 1981; 52():103-40. PubMed ID: 7052860
    [No Abstract]   [Full Text] [Related]  

  • 8. Controls on metal exposure to aquatic organisms in urban streams.
    Turpin-Nagel K; Vadas TM
    Environ Sci Process Impacts; 2016 Aug; 18(8):956-67. PubMed ID: 27170052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal contamination in the sediment, pondweed, and snails of a stream receiving effluent from a lead/zinc mine in southern China.
    Deng PY; Shu WS; Lan CY; Liu W
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):69-74. PubMed ID: 18480956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution function of heavy metals in river sediment.
    Nishida H; Miyai M
    Bull Environ Contam Toxicol; 1984 Feb; 32(2):212-9. PubMed ID: 6704554
    [No Abstract]   [Full Text] [Related]  

  • 11. Physiological sensitivity of freshwater macroinvertebrates to heavy metals.
    Malaj E; Grote M; Schäfer RB; Brack W; von der Ohe PC
    Environ Toxicol Chem; 2012 Aug; 31(8):1754-64. PubMed ID: 22553143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Legal regulations on the entry of heavy metals into drinking water by pipe materials in different water compositions].
    Meyer E
    Schriftenr Ver Wasser Boden Lufthyg; 1981; 52():9-30. PubMed ID: 7052879
    [No Abstract]   [Full Text] [Related]  

  • 13. Larval aquatic insect responses to cadmium and zinc in experimental streams.
    Mebane CA; Schmidt TS; Balistrieri LS
    Environ Toxicol Chem; 2017 Mar; 36(3):749-762. PubMed ID: 27541712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic in stream waters is bioaccumulated but neither biomagnified through food webs nor biodispersed to land.
    Hepp LU; Pratas JA; Graça MA
    Ecotoxicol Environ Saf; 2017 May; 139():132-138. PubMed ID: 28129598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Heavy metal occurrence in surface-, ground- and deepwaters].
    Winkler HA
    Fortschr Med; 1976 Jul; 94(20-21):1153-4. PubMed ID: 955549
    [No Abstract]   [Full Text] [Related]  

  • 16. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.
    Clements WH; Cadmus P; Brinkman SF
    Environ Sci Technol; 2013 Jul; 47(13):7506-13. PubMed ID: 23734565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups.
    Liess M; Gerner NV; Kefford BJ
    Environ Pollut; 2017 Aug; 227():505-512. PubMed ID: 28499260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Heavy metal burden of the human: comparison of uptake in drinking water and other foods].
    Sonneborn M
    Schriftenr Ver Wasser Boden Lufthyg; 1981; 52():1-8. PubMed ID: 7052859
    [No Abstract]   [Full Text] [Related]  

  • 19. Lemna (duckweed) as an indicator of water pollution. I. The sensitivity of Lemna paucicostata to heavy metals.
    Nasu Y; Kugimoto M
    Arch Environ Contam Toxicol; 1981; 10(2):159-69. PubMed ID: 7224668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Associations between trace metals in sediment, water, and guppy, Poecilia reticulata (Peters), from urban streams of Semarang, Indonesia.
    Widianarko B; Van Gestel CA; Verweij RA; Van Straalen NM
    Ecotoxicol Environ Saf; 2000 May; 46(1):101-7. PubMed ID: 10806000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.