BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

704 related articles for article (PubMed ID: 12526670)

  • 1. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-activity correlations in pentachlorobenzene oxidation by engineered cytochrome P450cam.
    Xu F; Bell SG; Rao Z; Wong LL
    Protein Eng Des Sel; 2007 Oct; 20(10):473-80. PubMed ID: 17962225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene.
    Chen X; Christopher A; Jones JP; Bell SG; Guo Q; Xu F; Rao Z; Wong LL
    J Biol Chem; 2002 Oct; 277(40):37519-26. PubMed ID: 12114516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome P450 active site plasticity: attenuation of imidazole binding in cytochrome P450(cam) by an L244A mutation.
    Verras A; Alian A; de Montellano PR
    Protein Eng Des Sel; 2006 Nov; 19(11):491-6. PubMed ID: 16943206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering substrate recognition in catalysis by cytochrome P450cam.
    Bell SG; Chen X; Xu F; Rao Z; Wong LL
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):558-62. PubMed ID: 12773156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)).
    Jones JP; O'Hare EJ; Wong LL
    Eur J Biochem; 2001 Mar; 268(5):1460-7. PubMed ID: 11231299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.
    Sowden RJ; Yasmin S; Rees NH; Bell SG; Wong LL
    Org Biomol Chem; 2005 Jan; 3(1):57-64. PubMed ID: 15602599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the substrate specificity by engineering the active site of cytochrome P450cam: a rational approach.
    Manna SK; Mazumdar S
    Dalton Trans; 2010 Mar; 39(12):3115-23. PubMed ID: 20221546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site mutations of cytochrome p450cam alter the binding, coupling, and oxidation of the foreign substrates (R)- and (s)-2-ethylhexanol.
    French KJ; Rock DA; Rock DA; Manchester JI; Goldstein BM; Jones JP
    Arch Biochem Biophys; 2002 Feb; 398(2):188-97. PubMed ID: 11831849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Butane and propane oxidation by engineered cytochrome P450cam.
    Bell SG; Stevenson JA; Boyd HD; Campbell S; Riddle AD; Orton EL; Wong LL
    Chem Commun (Camb); 2002 Mar; (5):490-1. PubMed ID: 12120555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.
    Mayhew MP; Reipa V; Holden MJ; Vilker VL
    Biotechnol Prog; 2000; 16(4):610-6. PubMed ID: 10933836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of protein and substrate dynamics in catalysis by Pseudomonas putida cytochrome P450cam.
    Prasad S; Mitra S
    Biochemistry; 2002 Dec; 41(49):14499-508. PubMed ID: 12463748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound I reactivity defines alkene oxidation selectivity in cytochrome P450cam.
    Lonsdale R; Harvey JN; Mulholland AJ
    J Phys Chem B; 2010 Jan; 114(2):1156-62. PubMed ID: 20014756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering of cytochrome p450(cam) (CYP101) for the oxidation of polycyclic aromatic hydrocarbons.
    Harford-Cross CF; Carmichael AB; Allan FK; England PA; Rouch DA; Wong LL
    Protein Eng; 2000 Feb; 13(2):121-8. PubMed ID: 10708651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC; Harford-Cross CF; Donovan J; Wong LL
    Eur J Biochem; 1999 Nov; 265(3):929-35. PubMed ID: 10518786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding pocket.
    Helms V; Deprez E; Gill E; Barret C; Hui Bon Hoa G; Wade RC
    Biochemistry; 1996 Feb; 35(5):1485-99. PubMed ID: 8634279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.