These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 12526685)
1. Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. Wagemaker M; Kearley GJ; Van Well AA; Mutka H; Mulder FM J Am Chem Soc; 2003 Jan; 125(3):840-8. PubMed ID: 12526685 [TBL] [Abstract][Full Text] [Related]
2. Extensive migration of Ni and Mn by lithiation of ordered LiMg0.1Ni0.4Mn(1.5)O4 spinel. Wagemaker M; Ooms FG; Kelder EM; Schoonman J; Kearley GJ; Mulder FM J Am Chem Soc; 2004 Oct; 126(41):13526-33. PubMed ID: 15479109 [TBL] [Abstract][Full Text] [Related]
3. The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. Wagemaker M; Borghols WJ; van Eck ER; Kentgens AP; Kearley GJ; Mulder FM Chemistry; 2007; 13(7):2023-8. PubMed ID: 17154318 [TBL] [Abstract][Full Text] [Related]
4. Li intercalation in TiO2 anatase: Raman spectroscopy and lattice dynamic studies. Smirnov M; Baddour-Hadjean R J Chem Phys; 2004 Aug; 121(5):2348-55. PubMed ID: 15260789 [TBL] [Abstract][Full Text] [Related]
5. Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. Wagemaker M; Borghols WJ; Mulder FM J Am Chem Soc; 2007 Apr; 129(14):4323-7. PubMed ID: 17362005 [TBL] [Abstract][Full Text] [Related]
6. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO(2) anatase. Wagemaker M; Kentgens AP; Mulder FM Nature; 2002 Jul; 418(6896):397-9. PubMed ID: 12140552 [TBL] [Abstract][Full Text] [Related]
7. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. Bréger J; Dupré N; Chupas PJ; Lee PL; Proffen T; Parise JB; Grey CP J Am Chem Soc; 2005 May; 127(20):7529-37. PubMed ID: 15898804 [TBL] [Abstract][Full Text] [Related]
8. Defect chemistry, surface structures, and lithium insertion in anatase TiO2. Olson CL; Nelson J; Islam MS J Phys Chem B; 2006 May; 110(20):9995-10001. PubMed ID: 16706458 [TBL] [Abstract][Full Text] [Related]
9. Role of Ti-O bonds in phase transitions of TiO2. Nosheen S; Galasso FS; Suib SL Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129 [TBL] [Abstract][Full Text] [Related]
10. The effect of concentration on Li diffusivity and conductivity in rutile TiO2. Yildirim H; Greeley JP; Sankaranarayanan SK Phys Chem Chem Phys; 2012 Apr; 14(13):4565-76. PubMed ID: 22354386 [TBL] [Abstract][Full Text] [Related]
11. Local structure and lithium mobility in intercalated Li3Al(x)Ti(2-x)(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study. Arbi K; Hoelzel M; Kuhn A; García-Alvarado F; Sanz J Phys Chem Chem Phys; 2014 Sep; 16(34):18397-405. PubMed ID: 25070935 [TBL] [Abstract][Full Text] [Related]
12. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. Wagemaker M; van de Krol R; Kentgens AP; van Well AA; Mulder FM J Am Chem Soc; 2001 Nov; 123(46):11454-61. PubMed ID: 11707123 [TBL] [Abstract][Full Text] [Related]
13. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics. Caronna C; Natali F; Cupane A Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102 [TBL] [Abstract][Full Text] [Related]
14. Superlattice formation in the lithiated vanadium oxide phases Li(0.67)V(6)O(13) and LiV(6)O(13). Björk H; Lidin S; Gustafsson T; Thomas JO Acta Crystallogr B; 2001 Dec; 57(Pt 6):759-65. PubMed ID: 11717474 [TBL] [Abstract][Full Text] [Related]
15. Structural study of the Li(0.5)Na(0.5)MnFe2(PO4)3 and Li(0.75)Na(0.25)MnFe2(PO4)3 alluaudite phases and their electrochemical properties as positive electrodes in lithium batteries. Trad K; Carlier D; Croguennec L; Wattiaux A; Ben Amara M; Delmas C Inorg Chem; 2010 Nov; 49(22):10378-89. PubMed ID: 20949928 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089 [TBL] [Abstract][Full Text] [Related]
17. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. Yamakawa N; Jiang M; Key B; Grey CP J Am Chem Soc; 2009 Aug; 131(30):10525-36. PubMed ID: 19585988 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. van Wüllen L; Echelmeyer T; Meyer HW; Wilmer D Phys Chem Chem Phys; 2007 Jul; 9(25):3298-303. PubMed ID: 17579739 [TBL] [Abstract][Full Text] [Related]
19. Tuning the structural and physical properties of Cr2Ti3Se8 by lithium intercalation: a study of the magnetic properties, investigation of ion mobility with NMR spectroscopy and electronic band structure calculations. Wontcheu J; Bensch W; Wilkening M; Heitjans P; Indris S; Sideris P; Grey CP; Mankovsky S; Ebert H J Am Chem Soc; 2008 Jan; 130(1):288-99. PubMed ID: 18076171 [TBL] [Abstract][Full Text] [Related]
20. Blends of POSS-PEO(n=4)(8) and high molecular weight poly(ethylene oxide) as solid polymer electrolytes for lithium batteries. Zhang H; Kulkarni S; Wunder SL J Phys Chem B; 2007 Apr; 111(14):3583-90. PubMed ID: 17388529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]