These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 12526819)
1. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. Potineni A; Lynn DM; Langer R; Amiji MM J Control Release; 2003 Jan; 86(2-3):223-34. PubMed ID: 12526819 [TBL] [Abstract][Full Text] [Related]
2. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Shenoy D; Little S; Langer R; Amiji M Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488 [TBL] [Abstract][Full Text] [Related]
3. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Shenoy D; Little S; Langer R; Amiji M Pharm Res; 2005 Dec; 22(12):2107-14. PubMed ID: 16254763 [TBL] [Abstract][Full Text] [Related]
4. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Devalapally H; Shenoy D; Little S; Langer R; Amiji M Cancer Chemother Pharmacol; 2007 Mar; 59(4):477-84. PubMed ID: 16862429 [TBL] [Abstract][Full Text] [Related]
5. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Shenoy DB; Amiji MM Int J Pharm; 2005 Apr; 293(1-2):261-70. PubMed ID: 15778064 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Chawla JS; Amiji MM Int J Pharm; 2002 Dec; 249(1-2):127-38. PubMed ID: 12433441 [TBL] [Abstract][Full Text] [Related]
8. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Shah LK; Amiji MM Pharm Res; 2006 Nov; 23(11):2638-45. PubMed ID: 16969696 [TBL] [Abstract][Full Text] [Related]
9. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Zou J; Zhang F; Zhang S; Pollack SF; Elsabahy M; Fan J; Wooley KL Adv Healthc Mater; 2014 Mar; 3(3):441-8. PubMed ID: 23997013 [TBL] [Abstract][Full Text] [Related]
10. Novel self-associating poly(ethylene oxide)-b-poly(epsilon-caprolactone) based drug conjugates and nano-containers for paclitaxel delivery. Shahin M; Lavasanifar A Int J Pharm; 2010 Apr; 389(1-2):213-22. PubMed ID: 20080163 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
12. Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Wang L; Yao J; Zhang X; Zhang Y; Xu C; Lee RJ; Yu G; Yu B; Teng L Colloids Surf B Biointerfaces; 2018 Jan; 161():464-470. PubMed ID: 29128832 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity of Paclitaxel in biodegradable self-assembled core-shell poly(lactide-co-glycolide ethylene oxide fumarate) nanoparticles. He X; Ma J; Mercado AE; Xu W; Jabbari E Pharm Res; 2008 Jul; 25(7):1552-62. PubMed ID: 18196205 [TBL] [Abstract][Full Text] [Related]
14. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. Kaul G; Amiji M J Pharm Sci; 2005 Jan; 94(1):184-98. PubMed ID: 15761942 [TBL] [Abstract][Full Text] [Related]
15. Enhancement in anti-proliferative effects of paclitaxel in aortic smooth muscle cells upon co-administration with ceramide using biodegradable polymeric nanoparticles. Deshpande D; Devalapally H; Amiji M Pharm Res; 2008 Aug; 25(8):1936-47. PubMed ID: 18480968 [TBL] [Abstract][Full Text] [Related]
16. Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Nsereko S; Amiji M Biomaterials; 2002 Jul; 23(13):2723-31. PubMed ID: 12059022 [TBL] [Abstract][Full Text] [Related]
17. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. Liu Q; Cai C; Dong CM J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173 [TBL] [Abstract][Full Text] [Related]
18. Graphene oxide stabilized by PLA-PEG copolymers for the controlled delivery of paclitaxel. Angelopoulou A; Voulgari E; Diamanti EK; Gournis D; Avgoustakis K Eur J Pharm Biopharm; 2015 Jun; 93():18-26. PubMed ID: 25817600 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) microspheres for controlled release of paclitaxel. Ruan G; Feng SS Biomaterials; 2003 Dec; 24(27):5037-44. PubMed ID: 14559017 [TBL] [Abstract][Full Text] [Related]
20. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Pan J; Feng SS Biomaterials; 2008 Jun; 29(17):2663-72. PubMed ID: 18396333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]