These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 12526906)
1. Low trihalomethane formation in Korean drinking water. Yoon J; Choi Y; Cho S; Lee D Sci Total Environ; 2003 Jan; 302(1-3):157-66. PubMed ID: 12526906 [TBL] [Abstract][Full Text] [Related]
2. Formation of trihalomethanes of dissolved organic matter fractions in reservoir and canal waters. Musikavong C; Srimuang K; Tachapattaworakul Suksaroj T; Suksaroj C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):782-91. PubMed ID: 27166524 [TBL] [Abstract][Full Text] [Related]
3. Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Duong HA; Berg M; Hoang MH; Pham HV; Gallard H; Giger W; von Gunten U Water Res; 2003 Jul; 37(13):3242-52. PubMed ID: 14509712 [TBL] [Abstract][Full Text] [Related]
4. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO Padhi RK; Subramanian S; Satpathy KK Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715 [TBL] [Abstract][Full Text] [Related]
5. [Risk Assessment of Trihalomethane Production Using the Beijiang River and the Pearl River, Guangzhou as Drinking Water Sources]. Zhong HZ; Wei CH Huan Jing Ke Xue; 2015 Apr; 36(4):1277-84. PubMed ID: 26164901 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of chlorinated by-products in drinking waters of Central Friuli (Italy). Goi D; Tubaro F; Barbone F; Dolcetti G; Bontempelli G Ann Chim; 2005; 95(9-10):617-27. PubMed ID: 16342734 [TBL] [Abstract][Full Text] [Related]
7. Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment. Brooks E; Freeman C; Gough R; Holliman PJ Sci Total Environ; 2015 Dec; 537():203-12. PubMed ID: 26282754 [TBL] [Abstract][Full Text] [Related]
8. Using regression models to evaluate the formation of trihalomethanes and haloacetonitriles via chlorination of source water with low SUVA values in the Yangtze River Delta region, China. Hong H; Song Q; Mazumder A; Luo Q; Chen J; Lin H; Yu H; Shen L; Liang Y Environ Geochem Health; 2016 Dec; 38(6):1303-1312. PubMed ID: 26803297 [TBL] [Abstract][Full Text] [Related]
9. Investigation into the content and formation of trihalomethanes and molecular change of dissolved organic matter from a typical water plant in south China. Wang W; Ma Y; Zhou Y; Huang H; Dou W; Jiang B Environ Geochem Health; 2021 Oct; 43(10):4315-4328. PubMed ID: 33860413 [TBL] [Abstract][Full Text] [Related]
10. Investigation of trihalomethanes formation potential in Karoon River water, Iran. Fooladvand M; Ramavandi B; Zandi K; Ardestani M Environ Monit Assess; 2011 Jul; 178(1-4):63-71. PubMed ID: 20824334 [TBL] [Abstract][Full Text] [Related]
11. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane. Kim MH; Yu MJ Environ Res; 2005 Jan; 97(1):116-23. PubMed ID: 15476741 [TBL] [Abstract][Full Text] [Related]
12. Modeling of trihalomethanes (THMs) in drinking water supplies: a case study of eastern part of India. Kumari M; Gupta SK Environ Sci Pollut Res Int; 2015 Aug; 22(16):12615-23. PubMed ID: 25911288 [TBL] [Abstract][Full Text] [Related]
13. Analysis of trihalomethanes in drinking water using headspace-SPME technique with gas chromatography. Cho DH; Kong SH; Oh SG Water Res; 2003 Jan; 37(2):402-8. PubMed ID: 12502068 [TBL] [Abstract][Full Text] [Related]
14. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment. Xu Z; Li X; Hu X; Yin D Chemosphere; 2017 Oct; 184():253-260. PubMed ID: 28601007 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of a new generation of disinfection byproducts. Krasner SW; Weinberg HS; Richardson SD; Pastor SJ; Chinn R; Sclimenti MJ; Onstad GD; Thruston AD Environ Sci Technol; 2006 Dec; 40(23):7175-85. PubMed ID: 17180964 [TBL] [Abstract][Full Text] [Related]
16. Photocatalytic oxidation of natural organic matter surrogates and the impact on trihalomethane formation potential. Philippe KK; Hans C; MacAdam J; Jefferson B; Hart J; Parsons SA Chemosphere; 2010 Dec; 81(11):1509-16. PubMed ID: 20832843 [TBL] [Abstract][Full Text] [Related]
17. The influence of precursors and treatment process on the formation of Iodo-THMs in Canadian drinking water. Tugulea AM; Aranda-Rodriguez R; Bérubé D; Giddings M; Lemieux F; Hnatiw J; Dabeka L; Breton F Water Res; 2018 Mar; 130():215-223. PubMed ID: 29223782 [TBL] [Abstract][Full Text] [Related]
18. Reduction of dissolved organic matter in terms of DOC, UV-254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds. Musikavong C; Wattanachira S Environ Monit Assess; 2007 Nov; 134(1-3):489-97. PubMed ID: 17975744 [TBL] [Abstract][Full Text] [Related]
19. New Insights into Trihalomethane and Haloacetic Acid Formation Potentials: Correlation with the Molecular Composition of Natural Organic Matter in Source Water. Wang X; Zhang H; Zhang Y; Shi Q; Wang J; Yu J; Yang M Environ Sci Technol; 2017 Feb; 51(4):2015-2021. PubMed ID: 28098448 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection. Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]