These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12526914)
1. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid. Scheckel KG; Ryan JA Sci Total Environ; 2003 Jan; 302(1-3):253-65. PubMed ID: 12526914 [TBL] [Abstract][Full Text] [Related]
2. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Scheckel KG; Ryan JA Environ Sci Technol; 2002 May; 36(10):2198-204. PubMed ID: 12038830 [TBL] [Abstract][Full Text] [Related]
3. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils. Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic speciation and quantification of lead in phosphate-amended soils. Scheckel KG; Ryan JA J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110 [TBL] [Abstract][Full Text] [Related]
5. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate. Chrysochoou M; Dermatas D; Grubb DG J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110 [TBL] [Abstract][Full Text] [Related]
6. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Yang J; Mosby DE; Casteel SW; Blanchar RW Environ Sci Technol; 2001 Sep; 35(17):3553-9. PubMed ID: 11563662 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Pb(II) immobilized by bone char meal and phosphate rock: characterization and kinetic study. Chen S; Ma Y; Chen L; Wang L; Guo H Arch Environ Contam Toxicol; 2010 Jan; 58(1):24-32. PubMed ID: 19471990 [TBL] [Abstract][Full Text] [Related]
8. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Debela F; Arocena JM; Thring RW; Whitcombe T Chemosphere; 2010 Jun; 80(4):450-6. PubMed ID: 20444487 [TBL] [Abstract][Full Text] [Related]
9. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles. Fan J; Zhao L; Kan J; Qiu H; Xu X; Cao X Ecotoxicol Environ Saf; 2020 May; 194():110411. PubMed ID: 32151869 [TBL] [Abstract][Full Text] [Related]
10. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy. Hashimoto Y; Takaoka M; Oshita K; Tanida H Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557 [TBL] [Abstract][Full Text] [Related]
11. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science. Scheckel KG; Diamond GL; Burgess MF; Klotzbach JM; Maddaloni M; Miller BW; Partridge CR; Serda SM J Toxicol Environ Health B Crit Rev; 2013; 16(6):337-80. PubMed ID: 24151967 [TBL] [Abstract][Full Text] [Related]
12. Relative bioaccessibility of Pb-based paint in soil. Hunt A Environ Geochem Health; 2016 Aug; 38(4):1037-50. PubMed ID: 26744019 [TBL] [Abstract][Full Text] [Related]
13. Oxalate-enhanced solubility of lead (Pb) in the presence of phosphate: pH control on mineral precipitation. McBride MB; Kelch SE; Schmidt MP; Sherpa S; Martinez CE; Aristilde L Environ Sci Process Impacts; 2019 Apr; 21(4):738-747. PubMed ID: 30895974 [TBL] [Abstract][Full Text] [Related]
14. Transformation of galena to pyromorphite produces bioavailable sulfur for neutrophilic chemoautotrophy. Walczak AB; Kafantaris FA; Druschel GK; Yee N; Young LY Geobiology; 2016 Nov; 14(6):599-606. PubMed ID: 27418402 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Cao X; Wahbi A; Ma L; Li B; Yang Y J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390 [TBL] [Abstract][Full Text] [Related]
16. Lead phosphate minerals: solubility and dissolution by model and natural ligands. Martínez CE; Jacobson AR; Mcbride MB Environ Sci Technol; 2004 Nov; 38(21):5584-90. PubMed ID: 15575275 [TBL] [Abstract][Full Text] [Related]
17. X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite. Taylor RW; Bleam WF; Ranatunga TD; Schulthess CP; Senwo ZN; Ranatunga DR Environ Sci Technol; 2009 Feb; 43(3):711-7. PubMed ID: 19245006 [TBL] [Abstract][Full Text] [Related]
18. Pb remobilization by bacterially mediated dissolution of pyromorphite Pb5(PO4)3Cl in presence of phosphate-solubilizing Pseudomonas putida. Topolska J; Latowski D; Kaschabek S; Manecki M; Merkel BJ; Rakovan J Environ Sci Pollut Res Int; 2014 Jan; 21(2):1079-89. PubMed ID: 23872890 [TBL] [Abstract][Full Text] [Related]
19. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems. Hafsteinsdóttir EG; White DA; Gore DB; Stark SC Environ Pollut; 2011 Dec; 159(12):3496-503. PubMed ID: 21907472 [TBL] [Abstract][Full Text] [Related]
20. Formation of a lead-insoluble phase, pyromorphite, by hydroxyapatite during lead migration through the water-unsaturated soils of different lead mobilities. Ogawa S; Sato T; Katoh M Environ Sci Pollut Res Int; 2018 Mar; 25(8):7662-7671. PubMed ID: 29285700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]