These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12527026)

  • 1. Viscerosensory activation of noradrenergic inputs to the amygdala in rats.
    Myers EA; Rinaman L
    Physiol Behav; 2002 Dec; 77(4-5):723-9. PubMed ID: 12527026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical stimulation of visceral afferents activates medullary neurones projecting to the central amygdala and periaqueductal grey.
    Viltart O; Sartor DM; Verberne AJ
    Brain Res Bull; 2006 Dec; 71(1-3):51-9. PubMed ID: 17113928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hindbrain noradrenergic lesions attenuate anorexia and alter central cFos expression in rats after gastric viscerosensory stimulation.
    Rinaman L
    J Neurosci; 2003 Nov; 23(31):10084-92. PubMed ID: 14602823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats.
    Rinaman L; Hoffman GE; Dohanics J; Le WW; Stricker EM; Verbalis JG
    J Comp Neurol; 1995 Sep; 360(2):246-56. PubMed ID: 8522645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat.
    Petrov T; Krukoff TL; Jhamandas JH
    Brain Res; 1993 Apr; 609(1-2):81-92. PubMed ID: 8099526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trimethylthiazoline supports conditioned flavor avoidance and activates viscerosensory, hypothalamic, and limbic circuits in rats.
    Myers EA; Rinaman L
    Am J Physiol Regul Integr Comp Physiol; 2005 Jun; 288(6):R1716-26. PubMed ID: 15661969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala.
    Zardetto-Smith AM; Gray TS
    Brain Res Bull; 1990 Dec; 25(6):875-87. PubMed ID: 1981174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of amygdaloid projections to brainstem dopaminergic, noradrenergic, and adrenergic cell groups in the rat.
    Wallace DM; Magnuson DJ; Gray TS
    Brain Res Bull; 1992 Mar; 28(3):447-54. PubMed ID: 1591601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat.
    Sawchenko PE; Swanson LW
    Brain Res; 1982 Nov; 257(3):275-325. PubMed ID: 6756545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of noradrenergic afferents to the shell subregion of the nucleus accumbens: anterograde and retrograde tract-tracing studies in the rat.
    Delfs JM; Zhu Y; Druhan JP; Aston-Jones GS
    Brain Res; 1998 Sep; 806(2):127-40. PubMed ID: 9739125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medullary visceral reflex circuits: local afferents to nucleus tractus solitarii synthesize catecholamines and project to thoracic spinal cord.
    Mtui EP; Anwar M; Reis DJ; Ruggiero DA
    J Comp Neurol; 1995 Jan; 351(1):5-26. PubMed ID: 7534775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry.
    Kravets JL; Reyes BA; Unterwald EM; Van Bockstaele EJ
    Brain Struct Funct; 2015 Jan; 220(1):541-58. PubMed ID: 24271021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine and NPY efferents from the ventrolateral medulla to the amygdala in the rat.
    Zardetto-Smith AM; Gray TS
    Brain Res Bull; 1995; 38(3):253-60. PubMed ID: 7496819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats.
    Maniscalco JW; Rinaman L
    Physiol Behav; 2013 Sep; 121():35-42. PubMed ID: 23391574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.
    Reyes BA; Van Bockstaele EJ
    Brain Res; 2006 Oct; 1117(1):69-79. PubMed ID: 16962080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat.
    Herbert H; Saper CB
    J Comp Neurol; 1992 Jan; 315(1):34-52. PubMed ID: 1371780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dedicated C-fibre viscerosensory pathways to central nucleus of the amygdala.
    McDougall SJ; Guo H; Andresen MC
    J Physiol; 2017 Feb; 595(3):901-917. PubMed ID: 27616729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholecystokinin induces Fos expression in catecholaminergic neurons of the macaque monkey caudal medulla.
    Schreihofer DA; Cameron JL; Verbalis JG; Rinaman L
    Brain Res; 1997 Oct; 770(1-2):37-44. PubMed ID: 9372200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural populations in the rat forebrain and brainstem activated by the suckling stimulus as demonstrated by cFos expression.
    Li C; Chen P; Smith MS
    Neuroscience; 1999; 94(1):117-29. PubMed ID: 10613502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: evidence for parallel viscerosensory pathways in the rat brain.
    Gaykema RP; Chen CC; Goehler LE
    Brain Res; 2007 Jan; 1130(1):130-45. PubMed ID: 17169348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.