These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12527140)

  • 1. Effect of click intensity on click-evoked otoacoustic emission waveforms: implications for the origin of emissions.
    Carvalho S; Büki B; Bonfils P; Avan P
    Hear Res; 2003 Jan; 175(1-2):215-25. PubMed ID: 12527140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans.
    Goodman SS; Fitzpatrick DF; Ellison JC; Jesteadt W; Keefe DH
    J Acoust Soc Am; 2009 Feb; 125(2):1014-32. PubMed ID: 19206876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoacoustic emissions from ears with spontaneous activity behave differently to those without: Stronger responses to tone bursts as well as to clicks.
    Jedrzejczak WW; Kochanek K; Skarzynski H
    PLoS One; 2018; 13(2):e0192930. PubMed ID: 29451905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additional findings on heritability and prenatal masculinization of cochlear mechanisms: click-evoked otoacoustic emissions.
    McFadden D; Loehlin JC; Pasanen EG
    Hear Res; 1996 Aug; 97(1-2):102-19. PubMed ID: 8844191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Apr; 121(4):2097-110. PubMed ID: 17471725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Linear" and "derived" otoacoustic emissions in newborns: a comparative study.
    Tognola G; Ravazzani P; Molini E; Ricci G; Alunni N; Parazzini M; Grandori F
    Ear Hear; 2001 Jun; 22(3):182-90. PubMed ID: 11409854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-frequency decomposition of click evoked otoacoustic emissions in children.
    Mishra SK; Biswal M
    Hear Res; 2016 May; 335():161-178. PubMed ID: 26976693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data.
    Kapadia S; Lutman ME
    Hear Res; 2000 Aug; 146(1-2):101-20. PubMed ID: 10913888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal suppression of long-latency click-evoked otoacoustic emissions.
    Verhulst S; Harte JM; Dau T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1932-6. PubMed ID: 18002361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear temporal interactions in click-evoked otoacoustic emissions. I. Assumed model and polarity-symmetry.
    Kapadia S; Lutman ME
    Hear Res; 2000 Aug; 146(1-2):89-100. PubMed ID: 10913887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tone burst evoked otoacoustic emissions in different age-groups of schoolchildren.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Olszewski L; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2015 Aug; 79(8):1310-5. PubMed ID: 26092548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay.
    Mishra SK; Lutman ME
    Ear Hear; 2013; 34(6):789-98. PubMed ID: 23739244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interindividual variation of sensitivity to frequency modulation: its relation with click-evoked and distortion product otoacoustic emissions.
    Otsuka S; Furukawa S; Yamagishi S; Hirota K; Kashino M
    J Assoc Res Otolaryngol; 2014 Apr; 15(2):175-86. PubMed ID: 24504749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay dependence for the origin of the nonlinear derived transient evoked otoacoustic emission.
    Withnell RH; McKinley S
    J Acoust Soc Am; 2005 Jan; 117(1):281-91. PubMed ID: 15704421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of intermodulation distortion in transient-evoked otoacoustic emissions.
    Yates GK; Withnell RH
    Hear Res; 1999 Oct; 136(1-2):49-64. PubMed ID: 10511624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal suppression of the click-evoked otoacoustic emission level-curve.
    Verhulst S; Harte JM; Dau T
    J Acoust Soc Am; 2011 Mar; 129(3):1452-63. PubMed ID: 21428509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal Suppression of Clicked-Evoked Otoacoustic Emissions and Basilar-Membrane Motion in Gerbils.
    Charaziak KK; Dong W; Shera CA
    AIP Conf Proc; 2018; 1965(1):. PubMed ID: 30057432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.