These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 12527248)
1. Effects of stress deprivation on mechanical properties of the in situ frozen-thawed semitendinosus tendon in rabbits. Hara N; Yasuda K; Kimura S; Majima T; Minami A; Tohyama H Clin Biomech (Bristol); 2003 Jan; 18(1):60-8. PubMed ID: 12527248 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of collagen fascicles from in situ frozen and stress-shielded rabbit patellar tendons. Yamamoto E; Tokura S; Yamamoto N; Hayashi K Clin Biomech (Bristol); 2000 May; 15(4):284-91. PubMed ID: 10675670 [TBL] [Abstract][Full Text] [Related]
3. Deterioration of mechanical properties of the autograft in controlled stress-shielded augmentation procedures. An experimental study with rabbit patellar tendon. Majima T; Yasuda K; Yamamoto N; Kaneda K; Hayashi K Am J Sports Med; 1994; 22(6):821-9. PubMed ID: 7856807 [TBL] [Abstract][Full Text] [Related]
4. The effect of increased stress on the patellar tendon. Tohyama H; Yasuda K J Bone Joint Surg Br; 2002 Apr; 84(3):440-6. PubMed ID: 12002508 [TBL] [Abstract][Full Text] [Related]
5. Effects of complete stress-shielding on the mechanical properties and histology of in situ frozen patellar tendon. Ohno K; Yasuda K; Yamamoto N; Kaneda K; Hayashi K J Orthop Res; 1993 Jul; 11(4):592-602. PubMed ID: 8340831 [TBL] [Abstract][Full Text] [Related]
6. Effects of resumption of loading on stress-shielded autografts after augmentation procedures. An experimental study. Ishida H; Yasuda K; Hayashi K; Yamamoto N; Kaneda K Am J Sports Med; 1996; 24(4):510-7. PubMed ID: 8827312 [TBL] [Abstract][Full Text] [Related]
7. Significance of graft tension in anterior cruciate ligament reconstruction. Basic background and clinical outcome. Tohyama H; Yasuda K Knee Surg Sports Traumatol Arthrosc; 1998; 6 Suppl 1():S30-7. PubMed ID: 9608461 [TBL] [Abstract][Full Text] [Related]
8. Effects of stress shielding on the mechanical properties of rabbit patellar tendon. Yamamoto N; Ohno K; Hayashi K; Kuriyama H; Yasuda K; Kaneda K J Biomech Eng; 1993 Feb; 115(1):23-8. PubMed ID: 8445894 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical effects of stress shielding of the rabbit patellar tendon depend on the degree of stress reduction. Majima T; Yasuda K; Fujii T; Yamamoto N; Hayashi K; Kaneda K J Orthop Res; 1996 May; 14(3):377-83. PubMed ID: 8676249 [TBL] [Abstract][Full Text] [Related]
10. The effects of stress enhancement on the extracellular matrix and fibroblasts in the patellar tendon. Tohyama H; Yasuda K J Biomech; 2000 May; 33(5):559-65. PubMed ID: 10708776 [TBL] [Abstract][Full Text] [Related]
11. Timing of administration of transforming growth factor-beta and epidermal growth factor influences the effect on material properties of the in situ frozen-thawed anterior cruciate ligament. Azuma H; Yasuda K; Tohyama H; Sakai T; Majima T; Aoki Y; Minami A J Biomech; 2003 Mar; 36(3):373-81. PubMed ID: 12594985 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties of collagen fascicles from stress-shielded patellar tendons in the rabbit. Yamamoto E; Hayashi K; Yamamoto N Clin Biomech (Bristol); 1999 Jul; 14(6):418-25. PubMed ID: 10521624 [TBL] [Abstract][Full Text] [Related]
13. Effects of separate application of three growth factors (TGF-beta1, EGF, and PDGF-BB) on mechanical properties of the in situ frozen-thawed anterior cruciate ligament. Nagumo A; Yasuda K; Numazaki H; Azuma H; Tanabe Y; Kikuchi S; Harata S; Tohyama H Clin Biomech (Bristol); 2005 Mar; 20(3):283-90. PubMed ID: 15698701 [TBL] [Abstract][Full Text] [Related]
14. Effects of growth on the response of the rabbit patellar tendon to stress shielding: a biomechanical study. Fujie H; Yamamoto N; Murakami T; Hayashi K Clin Biomech (Bristol); 2000 Jun; 15(5):370-8. PubMed ID: 10758299 [TBL] [Abstract][Full Text] [Related]
15. The influence of freezing on the tensile strength of tendon grafts : a biomechanical study. Arnout N; Myncke J; Vanlauwe J; Labey L; Lismont D; Bellemans J Acta Orthop Belg; 2013 Aug; 79(4):435-43. PubMed ID: 24205775 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical and histological evaluations of the doubled semitendinosus tendon autograft after anterior cruciate ligament reconstruction in sheep. Kondo E; Yasuda K; Katsura T; Hayashi R; Kotani Y; Tohyama H Am J Sports Med; 2012 Feb; 40(2):315-24. PubMed ID: 22088579 [TBL] [Abstract][Full Text] [Related]
17. Decellularized Versus Fresh-Frozen Allografts in Anterior Cruciate Ligament Reconstruction: An In Vitro Study in a Rabbit Model. Dong S; Huangfu X; Xie G; Zhang Y; Shen P; Li X; Qi J; Zhao J Am J Sports Med; 2015 Aug; 43(8):1924-34. PubMed ID: 26037623 [TBL] [Abstract][Full Text] [Related]
18. Extrinsic cell infiltration and revascularization accelerate mechanical deterioration of the patellar tendon after fibroblast necrosis. Tohyama H; Yasuda K J Biomech Eng; 2000 Dec; 122(6):594-9. PubMed ID: 11192379 [TBL] [Abstract][Full Text] [Related]
19. Effects of freezing/thawing on the biomechanical properties of human tendons. Clavert P; Kempf JF; Bonnomet F; Boutemy P; Marcelin L; Kahn JL Surg Radiol Anat; 2001; 23(4):259-62. PubMed ID: 11694971 [TBL] [Abstract][Full Text] [Related]
20. Local administration of interleukin-1 receptor antagonist inhibits deterioration of mechanical properties of the stress-shielded patellar tendon. Miyatake S; Tohyama H; Kondo E; Katsura T; Onodera S; Yasuda K J Biomech; 2008; 41(4):884-9. PubMed ID: 18062978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]