BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12527277)

  • 21. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.
    Lu W; Duan W; Guo Y; Ning C
    J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apatite-forming PEEK with TiO2 surface layer coating.
    Kizuki T; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2015 Jan; 26(1):5359. PubMed ID: 25589201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different calcium contents.
    Kamitakahara M; Kawashita M; Miyata N; Kokubo T; Nakamura T
    J Mater Sci Mater Med; 2002 Nov; 13(11):1015-20. PubMed ID: 15348170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactive calcium pyrophosphate glasses and glass-ceramics.
    Kasuga T
    Acta Biomater; 2005 Jan; 1(1):55-64. PubMed ID: 16701780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomimetic deposition of apatite coating on surface-modified NiTi alloy.
    Gu YW; Tay BY; Lim CS; Yong MS
    Biomaterials; 2005 Dec; 26(34):6916-23. PubMed ID: 15941583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Apatite-forming ability of CaO-containing titania.
    Wei M; Uchida M; Kim HM; Kokubo T; Nakamura T
    Biomaterials; 2002 Jan; 23(1):167-72. PubMed ID: 11762835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of titanium with hydrothermal treatment at high pressure.
    Sultana R; Kon M; Hirakata LM; Fujihara E; Asaoka K; Ichikawa T
    Dent Mater J; 2006 Sep; 25(3):470-9. PubMed ID: 17076316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Apatite formation abilities and mechanical properties of hydroxyethylmethacrylate-based organic-inorganic hybrids incorporated with sulfonic groups and calcium ions.
    Miyazaki T; Imamura M; Ishida E; Ashizuka M; Ohtsuki C
    J Mater Sci Mater Med; 2009 Jan; 20(1):157-61. PubMed ID: 18704648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro studies of novel CaO-SiO2-MgO system composite bioceramics.
    Ni S; Chang J; Chou L
    J Mater Sci Mater Med; 2008 Jan; 19(1):359-67. PubMed ID: 17607509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of molecular weight of poly(epsilon-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(epsilon-caprolactone)/silica nano-hybrid materials.
    Rhee SH
    Biomaterials; 2003 May; 24(10):1721-7. PubMed ID: 12593953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid.
    Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C
    Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO--SiO2--B2O3 system.
    Ryu HS; Lee JK; Seo JH; Kim H; Hong KS; Kim DJ; Lee JH; Lee DH; Chang BS; Lee CK; Chung SS
    J Biomed Mater Res A; 2004 Jan; 68(1):79-89. PubMed ID: 14661252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioactive organic/inorganic hybrids with improved mechanical performance.
    Li A; Shen H; Ren H; Wang C; Wu D; Martin RA; Qiu D
    J Mater Chem B; 2015 Feb; 3(7):1379-1390. PubMed ID: 32264489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.
    Ni S; Li X; Yang P; Ni S; Hong F; Webster TJ
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():700-8. PubMed ID: 26478362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface modifications of titanium in calcium-ion-containing solutions.
    Hanawa T; Kon M; Ukai H; Murakami K; Miyamoto Y; Asaoka K
    J Biomed Mater Res; 1997 Mar; 34(3):273-8. PubMed ID: 9086396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute.
    Rhee SH; Lee YK; Lim BS; Yoo JJ; Kim HJ
    Biomacromolecules; 2004; 5(4):1575-9. PubMed ID: 15244480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the bone-like apatite precipitated on high velocity oxy-fuel (HVOF) sprayed calcium phosphate deposits.
    Khor KA; Li H; Cheang P
    Biomaterials; 2003 Feb; 24(5):769-75. PubMed ID: 12485795
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication and characterization of oxygen-diffused titanium for biomedical applications.
    Yamamoto O; Alvarez K; Kikuchi T; Fukuda M
    Acta Biomater; 2009 Nov; 5(9):3605-15. PubMed ID: 19523543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.