BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 12527305)

  • 21. Solution structure of the catalytic domain of GCN5 histone acetyltransferase bound to coenzyme A.
    Lin Y; Fletcher CM; Zhou J; Allis CD; Wagner G
    Nature; 1999 Jul; 400(6739):86-9. PubMed ID: 10403255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural characterization of a GNAT family acetyltransferase from Elizabethkingia anophelis bound to acetyl-CoA reveals a new dimeric interface.
    Shirmast P; Ghafoori SM; Irwin RM; Abendroth J; Mayclin SJ; Lorimer DD; Edwards TE; Forwood JK
    Sci Rep; 2021 Jan; 11(1):1274. PubMed ID: 33446675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2.
    Sun J; Paduch M; Kim SA; Kramer RM; Barrios AF; Lu V; Luke J; Usatyuk S; Kossiakoff AA; Tan S
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):10010-10015. PubMed ID: 30224453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PanM, an acetyl-coenzyme A sensor required for maturation of L-aspartate decarboxylase (PanD).
    Stuecker TN; Tucker AC; Escalante-Semerena JC
    mBio; 2012; 3(4):. PubMed ID: 22782525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.
    Nasuno R; Hirano Y; Itoh T; Hakoshima T; Hibi T; Takagi H
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):11821-6. PubMed ID: 23818613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and Mechanism of Acetylation by the N-Terminal Dual Enzyme NatA/Naa50 Complex.
    Deng S; Magin RS; Wei X; Pan B; Petersson EJ; Marmorstein R
    Structure; 2019 Jul; 27(7):1057-1070.e4. PubMed ID: 31155310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical and structural characterization of recombinant histone acetyltransferase proteins.
    Marmorstein R
    Methods Enzymol; 2004; 376():106-19. PubMed ID: 14975301
    [No Abstract]   [Full Text] [Related]  

  • 28. Small-Molecule Acetylation by GCN5-Related
    Burckhardt RM; Escalante-Semerena JC
    Microbiol Mol Biol Rev; 2020 May; 84(2):. PubMed ID: 32295819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analysis of a novel substrate-free form of the aminoglycoside 6'-N-acetyltransferase from Enterococcus faecium.
    Jang H; Kwon S; Jeong CS; Lee CW; Hwang J; Jung KH; Lee JH; Park HH
    Acta Crystallogr F Struct Biol Commun; 2020 Aug; 76(Pt 8):364-371. PubMed ID: 32744248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GNAT-like strategy for polyketide chain initiation.
    Gu L; Geders TW; Wang B; Gerwick WH; Håkansson K; Smith JL; Sherman DH
    Science; 2007 Nov; 318(5852):970-4. PubMed ID: 17991863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and functional characterization of the α-tubulin acetyltransferase MEC-17.
    Davenport AM; Collins LN; Chiu H; Minor PJ; Sternberg PW; Hoelz A
    J Mol Biol; 2014 Jul; 426(14):2605-16. PubMed ID: 24846647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic mechanism of human histone acetyltransferase P/CAF.
    Tanner KG; Langer MR; Denu JM
    Biochemistry; 2000 Oct; 39(39):11961-9. PubMed ID: 11009610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of the dopamine N-acetyltransferase-acetyl-CoA complex provides insights into the catalytic mechanism.
    Cheng KC; Liao JN; Lyu PC
    Biochem J; 2012 Sep; 446(3):395-404. PubMed ID: 22716280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation.
    Song WS; Nam MS; Namgung B; Yoon SI
    Biochem Biophys Res Commun; 2015 Mar; 458(4):843-8. PubMed ID: 25698400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural characterization of a Gcn5-related N-acetyltransferase from Staphylococcus aureus.
    Srivastava P; Khandokar YB; Swarbrick CM; Roman N; Himiari Z; Sarker S; Raidal SR; Forwood JK
    PLoS One; 2014; 9(8):e102348. PubMed ID: 25118709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones.
    Vetting MW; Magnet S; Nieves E; Roderick SL; Blanchard JS
    Chem Biol; 2004 Apr; 11(4):565-73. PubMed ID: 15123251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into the substrate binding mechanism of novel ArgA from Mycobacterium tuberculosis.
    Das U; Singh E; Dharavath S; Tiruttani Subhramanyam UK; Pal RK; Vijayan R; Menon S; Kumar S; Gourinath S; Srinivasan A
    Int J Biol Macromol; 2019 Mar; 125():970-978. PubMed ID: 30576731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of histone acetyltransferases.
    Marmorstein R
    J Mol Biol; 2001 Aug; 311(3):433-44. PubMed ID: 11492997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT).
    Salah Ud-Din AI; Tikhomirova A; Roujeinikova A
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27367672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of cofactor-mediated stabilization and substrate recognition of the α-tubulin acetyltransferase αTAT1.
    Yuzawa S; Kamakura S; Hayase J; Sumimoto H
    Biochem J; 2015 Apr; 467(1):103-13. PubMed ID: 25602620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.