These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12527308)

  • 21. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1.
    Bak-Jensen KS; André G; Gottschalk TE; Paës G; Tran V; Svensson B
    J Biol Chem; 2004 Mar; 279(11):10093-102. PubMed ID: 14660599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft.
    Ohtaki A; Mizuno M; Yoshida H; Tonozuka T; Sakano Y; Kamitori S
    Carbohydr Res; 2006 Jun; 341(8):1041-6. PubMed ID: 16564038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Site-directed mutagenesis of active site residues in Bacillus subtilis alpha-amylase.
    Takase K; Matsumoto T; Mizuno H; Yamane K
    Biochim Biophys Acta; 1992 Apr; 1120(3):281-8. PubMed ID: 1576155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational docking, molecular dynamics simulation and subsite structure analysis of a maltogenic amylase from Bacillus lehensis G1 provide insights into substrate and product specificity.
    Manas NH; Bakar FD; Illias RM
    J Mol Graph Model; 2016 Jun; 67():1-13. PubMed ID: 27155296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.
    Møller MS; Windahl MS; Sim L; Bøjstrup M; Abou Hachem M; Hindsgaul O; Palcic M; Svensson B; Henriksen A
    J Mol Biol; 2015 Mar; 427(6 Pt B):1263-1277. PubMed ID: 25562209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the modes of actions of human salivary and pancreatic alpha-amylases on modified maltooligosaccharides.
    Nagamine Y; Omichi K; Ikenaka T
    J Biochem; 1988 Oct; 104(4):667-70. PubMed ID: 2467909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of catalytic-site mutants of Bacillus subtilis alpha-amylase with substrates and acarbose.
    Takase K
    Biochim Biophys Acta; 1992 Aug; 1122(3):278-82. PubMed ID: 1380303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8.
    Kaper T; Leemhuis H; Uitdehaag JC; van der Veen BA; Dijkstra BW; van der Maarel MJ; Dijkhuizen L
    Biochemistry; 2007 May; 46(17):5261-9. PubMed ID: 17407266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic catalysis in crystals of Escherichia coli maltodextrin phosphorylase.
    Geremia S; Campagnolo M; Schinzel R; Johnson LN
    J Mol Biol; 2002 Sep; 322(2):413-23. PubMed ID: 12217700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of essential carbohydrate/aromatic stacking interaction with Tyr100 and Phe259 on substrate binding of cyclodextrin glycosyltransferase from alkalophilic Bacillus sp. 1011.
    Haga K; Kanai R; Sakamoto O; Aoyagi M; Harata K; Yamane K
    J Biochem; 2003 Dec; 134(6):881-91. PubMed ID: 14769878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of maltotetraose-forming amylase from Pseudomonas saccharophila STB07 provides insights into its product specificity.
    Zhang Z; Jin T; Xie X; Ban X; Li C; Hong Y; Cheng L; Gu Z; Li Z
    Int J Biol Macromol; 2020 Jul; 154():1303-1313. PubMed ID: 31751711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts.
    Li C; Begum A; Numao S; Park KH; Withers SG; Brayer GD
    Biochemistry; 2005 Mar; 44(9):3347-57. PubMed ID: 15736945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1.
    Mori H; Bak-Jensen KS; Gottschalk TE; Motawia MS; Damager I; Møller BL; Svensson B
    Eur J Biochem; 2001 Dec; 268(24):6545-58. PubMed ID: 11737209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanistic analyses of catalysis in human pancreatic alpha-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids.
    Rydberg EH; Li C; Maurus R; Overall CM; Brayer GD; Withers SG
    Biochemistry; 2002 Apr; 41(13):4492-502. PubMed ID: 11914097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase.
    Sun Y; Duan X; Wang L; Wu J
    J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into the thermostability and product specificity of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Ban X; Gu Z; Li C; Hong Y; Cheng L; Li Z
    Biotechnol Lett; 2020 Feb; 42(2):295-303. PubMed ID: 31792661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of the pig pancreatic alpha-amylase complexed with malto-oligosaccharides.
    Payan F; Qian M
    J Protein Chem; 2003 Apr; 22(3):275-84. PubMed ID: 12962327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04.
    Xie X; Li Y; Ban X; Zhang Z; Gu Z; Li C; Hong Y; Cheng L; Jin T; Li Z
    Int J Biol Macromol; 2019 Oct; 138():394-402. PubMed ID: 31325505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures of maltohexaose and maltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into the mechanisms of transglycosylation activity and cyclodextrin size specificity.
    Uitdehaag JC; van Alebeek GJ; van Der Veen BA; Dijkhuizen L; Dijkstra BW
    Biochemistry; 2000 Jul; 39(26):7772-80. PubMed ID: 10869182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution.
    Davies GJ; Tolley SP; Henrissat B; Hjort C; Schülein M
    Biochemistry; 1995 Dec; 34(49):16210-20. PubMed ID: 8519779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.