These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12527364)

  • 81. Expression of caffeine biosynthesis genes in tea (Camellia sinensis).
    Li Y; Ogita S; Keya CA; Ashihara H
    Z Naturforsch C J Biosci; 2008; 63(3-4):267-70. PubMed ID: 18533472
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Uptake of adenine by purine permeases of
    Kakegawa H; Shitan N; Kusano H; Ogita S; Yazaki K; Sugiyama A
    Biosci Biotechnol Biochem; 2019 Jul; 83(7):1300-1305. PubMed ID: 30999827
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches.
    Salmona J; Dussert S; Descroix F; de Kochko A; Bertrand B; Joët T
    Plant Mol Biol; 2008 Jan; 66(1-2):105-24. PubMed ID: 18026845
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids.
    Summers RM; Louie TM; Yu CL; Gakhar L; Louie KC; Subramanian M
    J Bacteriol; 2012 Apr; 194(8):2041-9. PubMed ID: 22328667
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Purification and characterization of theobromine synthase in a Theobromine-Enriched wild tea plant (Camellia gymnogyna Chang) from Dayao Mountain, China.
    Teng J; Yan C; Zeng W; Zhang Y; Zeng Z; Huang Y
    Food Chem; 2020 May; 311():125875. PubMed ID: 31753680
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Expression of Batis maritima methyl chloride transferase in Escherichia coli.
    Ni X; Hager LP
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3611-5. PubMed ID: 10097085
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Molecular characterization of an ethylene receptor gene (CcETR1) in coffee trees, its relationship with fruit development and caffeine content.
    Bustamante-Porras J; Campa C; Poncet V; Noirot M; Leroy T; Hamon S; de Kochko A
    Mol Genet Genomics; 2007 Jun; 277(6):701-12. PubMed ID: 17318584
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Deeply functional identification of
    Wang Y; Liu YF; Wei MY; Zhang CY; Chen JD; Yao MZ; Chen L; Jin JQ
    Hortic Res; 2023 Feb; 10(2):uhac279. PubMed ID: 36793757
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Caffeine hazards and their prevention in germinating seeds of coffee (Coffea arabica L.).
    Friedman J; Waller GR
    J Chem Ecol; 1983 Aug; 9(8):1099-106. PubMed ID: 24407803
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The biological feasibility and social context of gene-edited, caffeine-free coffee.
    Leibrock NV; Santegoets J; Mooijman PJW; Yusuf F; Zuijdgeest XCL; Zutt EA; Jacobs JGM; Schaart JG
    Food Sci Biotechnol; 2022 Jun; 31(6):635-655. PubMed ID: 35646415
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties.
    O'Donnell AJ; Huang R; Barboline JJ; Barkman TJ
    Mol Biol Evol; 2021 Jun; 38(7):2704-2714. PubMed ID: 33662138
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica.
    de Sousa LP; Cipriano MAP; Freitas SDS; Carazzolle MF; da Silva MJ; Mondego JMC
    Microbiol Res; 2022 Oct; 263():127129. PubMed ID: 35907286
    [TBL] [Abstract][Full Text] [Related]  

  • 93. High production of caffeine and related enzyme activities in callus cultures of Coffea arabica L.
    Waller GR; Macvean CD; Suzuki T
    Plant Cell Rep; 1983 Jun; 2(3):109-12. PubMed ID: 24257975
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A new DNA marker CafLess-TCS1 for selection of caffeine-less tea plants.
    Ogino A; Taniguchi F; Yoshida K; Matsumoto S; Fukuoka H; Nesumi A
    Breed Sci; 2019 Sep; 69(3):393-400. PubMed ID: 31598071
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Allantoin has a limited role as nitrogen source in cultured coffee cells.
    Filippi SB; Azevedo RA; Sodek L; Mazzafera P
    J Plant Physiol; 2007 May; 164(5):544-52. PubMed ID: 16690165
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Primer design and amplification efficiencies are crucial for reliability of quantitative PCR studies of caffeine biosynthetic
    Sreedharan SP; Kumar A; Giridhar P
    3 Biotech; 2018 Nov; 8(11):467. PubMed ID: 30402369
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dataset on exogenous application of salicylic acid and methyljasmonate and the accumulation of caffeine in young leaf tissues and catabolically inactive endosperms.
    Kumar A; Naik GK; Giridhar P
    Data Brief; 2017 Aug; 13():22-27. PubMed ID: 28560278
    [TBL] [Abstract][Full Text] [Related]  

  • 98. N-methyltransferase activities in suspension cultures of Coffea arabica L.
    Baumann TW; Koetz R; Morath P
    Plant Cell Rep; 1983 Feb; 2(1):33-5. PubMed ID: 24257852
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Purine alkaloid formation and CO2 gas exchange in dependence of development and of environmental factors in leaves of Coffea arabica L.
    Frischknecht PM; Eller BM; Baumann TW
    Planta; 1982 Dec; 156(4):295-301. PubMed ID: 24272573
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The biosynthesis of caffeine in the coffee plant.
    ANDERSON L; GIBBS M
    J Biol Chem; 1962 Jun; 237():1941-4. PubMed ID: 13861254
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.