BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12527378)

  • 1. DmsD is required for the biogenesis of DMSO reductase in Escherichia coli but not for the interaction of the DmsA signal peptide with the Tat apparatus.
    Ray N; Oates J; Turner RJ; Robinson C
    FEBS Lett; 2003 Jan; 534(1-3):156-60. PubMed ID: 12527378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli.
    Thomas JD; Daniel RA; Errington J; Robinson C
    Mol Microbiol; 2001 Jan; 39(1):47-53. PubMed ID: 11123687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualizing interactions along the Escherichia coli twin-arginine translocation pathway using protein fragment complementation.
    Kostecki JS; Li H; Turner RJ; DeLisa MP
    PLoS One; 2010 Feb; 5(2):e9225. PubMed ID: 20169075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.
    Winstone TM; Tran VA; Turner RJ
    Biochemistry; 2013 Oct; 52(43):7532-41. PubMed ID: 24093457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a twin-arginine leader-binding protein.
    Oresnik IJ; Ladner CL; Turner RJ
    Mol Microbiol; 2001 Apr; 40(2):323-31. PubMed ID: 11309116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase.
    Papish AL; Ladner CL; Turner RJ
    J Biol Chem; 2003 Aug; 278(35):32501-6. PubMed ID: 12813051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Periplasmic Expression in Escherichia coli for the Production of Recombinant Proteins Tagged with the Small Metal-Binding Protein SmbP.
    Santos BD; Morones-Ramirez JR; Balderas-Renteria I; Casillas-Vega NG; Galbraith DW; Zarate X
    Mol Biotechnol; 2019 Jun; 61(6):451-460. PubMed ID: 30997666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific inhibition of the translocation of a subset of Escherichia coli TAT substrates by the TorA signal peptide.
    Chanal A; Santini CL; Wu LF
    J Mol Biol; 2003 Mar; 327(3):563-70. PubMed ID: 12634052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli.
    Barrett CM; Ray N; Thomas JD; Robinson C; Bolhuis A
    Biochem Biophys Res Commun; 2003 May; 304(2):279-84. PubMed ID: 12711311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex.
    Ulfig A; Fröbel J; Lausberg F; Blümmel AS; Heide AK; Müller M; Freudl R
    J Biol Chem; 2017 Jun; 292(26):10865-10882. PubMed ID: 28515319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis.
    Li H; Chang L; Howell JM; Turner RJ
    Biochim Biophys Acta; 2010 Jun; 1804(6):1301-9. PubMed ID: 20153451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of a Tat leader peptide by co-expression with its chaperone.
    Stevens CM; Paetzel M
    Protein Expr Purif; 2012 Jul; 84(1):167-72. PubMed ID: 22609337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity of signal peptide recognition in tat-dependent bacterial protein translocation.
    Blaudeck N; Sprenger GA; Freudl R; Wiegert T
    J Bacteriol; 2001 Jan; 183(2):604-10. PubMed ID: 11133954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803.
    Spence E; Sarcina M; Ray N; Møller SG; Mullineaux CW; Robinson C
    Mol Microbiol; 2003 Jun; 48(6):1481-9. PubMed ID: 12791132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.
    Shanmugham A; Bakayan A; Völler P; Grosveld J; Lill H; Bollen YJ
    PLoS One; 2012; 7(3):e34159. PubMed ID: 22479549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
    Cherak SJ; Turner RJ
    Biochem Biophys Res Commun; 2015 Oct; 465(4):753-7. PubMed ID: 26299930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli.
    Albiniak AM; Matos CF; Branston SD; Freedman RB; Keshavarz-Moore E; Robinson C
    FEBS J; 2013 Aug; 280(16):3810-21. PubMed ID: 23745597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexpression of TorD enhances the transport of GFP via the TAT pathway.
    Li SY; Chang BY; Lin SC
    J Biotechnol; 2006 Apr; 122(4):412-21. PubMed ID: 16253369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration.
    McCrindle SL; Kappler U; McEwan AG
    Adv Microb Physiol; 2005; 50():147-98. PubMed ID: 16221580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.