BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 12527403)

  • 1. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR.
    Jilkina O; Kuzio B; Kupriyanov VV
    Biochim Biophys Acta; 2003 Jan; 1637(1):20-30. PubMed ID: 12527403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of low-flow ischemia on K+ fluxes in isolated rat hearts assessed by 87Rb NMR.
    Kupriyanov VV; Xiang B; Kuzio B; Deslauriers R
    J Mol Cell Cardiol; 1999 Apr; 31(4):817-26. PubMed ID: 10329209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of ATP-sensitive K+ channels in isolated rat hearts assessed by 87Rb NMR spectroscopy.
    Kupriyanov VV; Yushmanov E; Xiang B; Deslauriers R
    NMR Biomed; 1998 May; 11(3):131-40. PubMed ID: 9699496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic phosphates in Na(+)-K+ balance in KCN-poisoned rat heart: a 87Rb-, 23Na-, and 31P-NMR study.
    Kupriyanov VV; Yang L; Deslauriers R
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1303-11. PubMed ID: 8967370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rubidium-87 magnetic resonance spectroscopy and imaging for analysis of mammalian K+ transport.
    Kupriyanov VV; Gruwel ML
    NMR Biomed; 2005 Apr; 18(2):111-24. PubMed ID: 15770627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH regulation of K(+) efflux from myocytes in isolated rat hearts: (87)Rb, (7)Li, and (31)P NMR studies.
    Kupriyanov VV; Xiang B; Kuzio B; Deslauriers R
    Am J Physiol; 1999 Jul; 277(1):H279-89. PubMed ID: 10409207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of mitochondrial K+ fluxes in whole rat hearts using 87Rb-NMR.
    Gruwel ML; Kuzio B; Deslauriers R; Kupriyanov VV
    Am J Physiol; 1999 Jan; 276(1):C193-200. PubMed ID: 9886935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways of Rb+ influx and their relation to intracellular [Na+] in the perfused rat heart. A 87Rb and 23Na NMR study.
    Kupriyanov VV; Stewart LC; Xiang B; Kwak J; Deslauriers R
    Circ Res; 1995 May; 76(5):839-51. PubMed ID: 7729001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Na+/K+ ATPase activity during low flow ischemia in preventing myocardial injury: a 31P, 23Na and 87Rb NMR spectroscopic study.
    Cross HR; Radda GK; Clarke K
    Magn Reson Med; 1995 Nov; 34(5):673-85. PubMed ID: 8544687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium transport in Langendorff-perfused mouse hearts assessed by 87Rb NMR spectroscopy.
    Jilkina O; Xiang B; Kuzio B; Rendell J; Kupriyanov VV
    Magn Reson Med; 2005 May; 53(5):1172-6. PubMed ID: 15844090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium fluxes, energy metabolism, and oxygenation in intact diabetic rat hearts under normal and stress conditions.
    Jilkina O; Kuzio B; Kupriyanov VV
    Can J Physiol Pharmacol; 2008 Oct; 86(10):710-25. PubMed ID: 18841176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ischemia on intracellular rubidium in pig and rat hearts: (87)Rb NMR imaging and spectroscopic study.
    Kupriyanov VV; Xiang B; Sun J; Jilkina O; Dai G; Deslauriers R
    Magn Reson Med; 2000 Aug; 44(2):193-200. PubMed ID: 10918317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of monovalent cation fluxes in isolated rat hearts: a magnetic resonance study.
    Gruwel ML; Kuzio B; Xiang B; Deslauriers R; Kupriyanov VV
    Biochim Biophys Acta; 1998 Dec; 1415(1):41-55. PubMed ID: 9858679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 87Rb, 23Na and 31P nuclear magnetic resonance spectroscopy of the perfused rat kidney.
    Allis JL; Endre ZH; Radda GK
    Ren Physiol Biochem; 1989; 12(3):171-80. PubMed ID: 2560232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term inhibition of the Na-H exchanger limits acidosis and reduces ischemic injury in the rat heart.
    Schaefer S; Ramasamy R
    Cardiovasc Res; 1997 May; 34(2):329-36. PubMed ID: 9205547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osmotic shock: modulation of contractile function, pHi, and ischemic damage in perfused guinea pig heart.
    Befroy DE; Powell T; Radda GK; Clarke K
    Am J Physiol; 1999 Apr; 276(4):H1236-44. PubMed ID: 10199848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repetitive acidosis protects the ischemic heart: implications for mechanisms in preconditioned hearts.
    Lundmark JA; Trueblood N; Wang LF; Ramasamy R; Schaefer S
    J Mol Cell Cardiol; 1999 Apr; 31(4):907-17. PubMed ID: 10329217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cromakalim and glibenclamide on myocardial high energy phosphates and intracellular pH during ischemia-reperfusion: 31P NMR studies.
    Docherty JC; Gunter HE; Kuzio B; Shoemaker L; Yang L; Deslauriers R
    J Mol Cell Cardiol; 1997 Jun; 29(6):1665-73. PubMed ID: 9220352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional (87)Rb NMR imaging and spectroscopy of K(+) fluxes in normal and postischemic pig hearts.
    Kupriyanov VV; Xiang B; Sun J; Dai G; Jilkina O; Dao V; Deslauriers R
    Magn Reson Med; 2000 Jul; 44(1):83-91. PubMed ID: 10893525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.