These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12527409)
1. Spermine induces cataract and 43-kDa protein that binds spermine possibly participates in the cataract formation. Maekawa S; Kataoka M; Uji Y; Hibasami H; Nakashima K Biochim Biophys Acta; 2003 Jan; 1637(1):70-4. PubMed ID: 12527409 [TBL] [Abstract][Full Text] [Related]
2. On the composition and origin of the urea-soluble polypeptides of the U18666A cataract. Cenedella RJ; Augusteyn RC Curr Eye Res; 1990 Sep; 9(9):805-18. PubMed ID: 2245643 [TBL] [Abstract][Full Text] [Related]
3. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
4. Calcium activated proteolysis and protein modification in the U18666A cataract. Chandrasekher G; Cenedella RJ Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025 [TBL] [Abstract][Full Text] [Related]
5. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. David LL; Azuma M; Shearer TR Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):785-93. PubMed ID: 8125740 [TBL] [Abstract][Full Text] [Related]
6. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification. Sanderson J; Marcantonio JM; Duncan G Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870 [TBL] [Abstract][Full Text] [Related]
7. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Su S; Liu P; Zhang H; Li Z; Song Z; Zhang L; Chen S Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):4182-91. PubMed ID: 21436267 [TBL] [Abstract][Full Text] [Related]
9. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419 [TBL] [Abstract][Full Text] [Related]
10. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract. Iwasaki N; David LL; Shearer TR Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):502-9. PubMed ID: 7843919 [TBL] [Abstract][Full Text] [Related]
11. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions. Yan H; Willis AC; Harding JJ Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541 [TBL] [Abstract][Full Text] [Related]
12. Modifications in lens protein biosynthesis signal the initiation of cataracts induced by buthionine sulfoximine in mice. Calvin HI; Wu JX; Viswanadhan K; Fu SC Exp Eye Res; 1996 Oct; 63(4):357-68. PubMed ID: 8944543 [TBL] [Abstract][Full Text] [Related]
13. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract. Chen Y; Yi L; Yan G; Fang Y; Jang Y; Wu X; Zhou X; Wei L Curr Eye Res; 2010 Jul; 35(7):620-30. PubMed ID: 20597648 [TBL] [Abstract][Full Text] [Related]
14. Binding of dexamethasone by alpha-crystallin. Jobling AI; Stevens A; Augusteyn RC Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1829-32. PubMed ID: 11431449 [TBL] [Abstract][Full Text] [Related]
15. Changes of urea-soluble and intrinsic membrane proteins in rat lenses during the formation of galactose cataract. Zhao HR; Ren XH Ophthalmic Res; 1992; 24(5):285-8. PubMed ID: 1475076 [TBL] [Abstract][Full Text] [Related]
16. Involvement of calpain in diamide-induced cataract in cultured lenses. Azuma M; Shearer TR FEBS Lett; 1992 Aug; 307(3):313-7. PubMed ID: 1644187 [TBL] [Abstract][Full Text] [Related]
17. lambda-crystallin related to dehydroascorbate reductase in the rabbit lens. Suzuki T; Bando M; Oka M; Tsukamoto H; Akatsuka I; Kawai K; Obazawa H; Kobayashi S; Takehana M Jpn J Ophthalmol; 2003; 47(5):437-43. PubMed ID: 12967857 [TBL] [Abstract][Full Text] [Related]
18. Calcium-induced changes on crystallins in organ-cultured porcine lens. Wu KY; Wang HZ; Hong SJ Kaohsiung J Med Sci; 1998 Sep; 14(9):569-76. PubMed ID: 9796201 [TBL] [Abstract][Full Text] [Related]
19. Calpain II induced insolubilization of lens beta-crystallin polypeptides may induce cataract. David LL; Wright JW; Shearer TR Biochim Biophys Acta; 1992 Jul; 1139(3):210-6. PubMed ID: 1627659 [TBL] [Abstract][Full Text] [Related]
20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]