These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 12527409)
21. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis. Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961 [TBL] [Abstract][Full Text] [Related]
22. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
23. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
24. Distribution and pattern of water-soluble proteins of lens as revealed by gel filtration chromatography in fish (Catla catla) of different age groups. Sahu CR; Chowdhury S Acta Biol Hung; 2002; 53(3):335-42. PubMed ID: 12371613 [TBL] [Abstract][Full Text] [Related]
25. Polyamines in normal and cataractous human lenses: evidence for post-translational modification. Kremzner LT; Roy D; Spector A Exp Eye Res; 1983 Dec; 37(6):649-59. PubMed ID: 6662211 [TBL] [Abstract][Full Text] [Related]
26. Cataract incidence and analysis of lens crystallins in the water-, urea- and SDS-soluble fractions of Emory mice fed a diet restricted by 40% in calories. Mura CV; Roh S; Smith D; Palmer V; Padhye N; Taylor A Curr Eye Res; 1993 Dec; 12(12):1081-91. PubMed ID: 8137632 [TBL] [Abstract][Full Text] [Related]
27. Nuclear cataract and light scattering in cultured lenses from guinea pig and rabbit. Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR Curr Eye Res; 1998 Jun; 17(6):623-35. PubMed ID: 9663852 [TBL] [Abstract][Full Text] [Related]
28. Progressive changes in lens crystallin glycation and high-molecular-weight aggregate formation leading to cataract development in streptozotocin-diabetic rats. Perry RE; Swamy MS; Abraham EC Exp Eye Res; 1987 Feb; 44(2):269-82. PubMed ID: 3582512 [TBL] [Abstract][Full Text] [Related]
29. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Srivastava OP Exp Eye Res; 1988 Oct; 47(4):525-43. PubMed ID: 3181333 [TBL] [Abstract][Full Text] [Related]
30. In vitro filament-like formation upon interaction between lens alpha-crystallin and betaL-crystallin promoted by stress. Weinreb O; van Rijk AF; Dovrat A; Bloemendal H Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):3893-7. PubMed ID: 11053291 [TBL] [Abstract][Full Text] [Related]
31. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens. Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057 [TBL] [Abstract][Full Text] [Related]
32. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper. Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558 [TBL] [Abstract][Full Text] [Related]
33. Role of calpain in hydrogen peroxide induced cataract. Kadoya K; Azuma M; David LL; Shearer TR Curr Eye Res; 1993 Apr; 12(4):341-6. PubMed ID: 8319493 [TBL] [Abstract][Full Text] [Related]
34. Age and cataract-related changes in the heavy molecular weight proteins and gamma crystallin composition of the mouse lens. Russell P; Smith SG; Carper DA; Kinoshita JH Exp Eye Res; 1979 Sep; 29(3):245-55. PubMed ID: 118039 [No Abstract] [Full Text] [Related]
35. Spermidine delays eye lens opacification in vitro by suppressing transglutaminase-catalyzed crystallin cross-linking. Lentini A; Tabolacci C; Mattioli P; Provenzano B; Beninati S Protein J; 2011 Feb; 30(2):109-14. PubMed ID: 21287398 [TBL] [Abstract][Full Text] [Related]
36. Altered patterns of phosphorylation in cultured mouse lenses during development of buthionine sulfoximine cataracts. Li W; Calvin HI; David LL; Wu K; McCormack AL; Zhu GP; Fu SC Exp Eye Res; 2002 Sep; 75(3):335-46. PubMed ID: 12384096 [TBL] [Abstract][Full Text] [Related]
37. Asp 58 modulates lens αA-crystallin oligomer formation and chaperone function. Takata T; Nakamura-Hirota T; Inoue R; Morishima K; Sato N; Sugiyama M; Fujii N FEBS J; 2018 Jun; 285(12):2263-2277. PubMed ID: 29676852 [TBL] [Abstract][Full Text] [Related]
38. Lens protein composition, glycation and high molecular weight aggregation in aging rats. Swamy MS; Abraham EC Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142 [TBL] [Abstract][Full Text] [Related]
39. Oxidation enhances calpain-induced turbidity in young rat lenses. Nakamura Y; Fukiage C; Azuma M; Shearer TR Curr Eye Res; 1999 Jul; 19(1):33-40. PubMed ID: 10415455 [TBL] [Abstract][Full Text] [Related]
40. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]