These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12527409)

  • 41. Calcium-induced high molecular weight proteins in the intact rabbit lens.
    Giblin FJ; Hightower KR; Ragatzki PA; Reddy VN
    Exp Eye Res; 1984 Jul; 39(1):9-17. PubMed ID: 6434338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Composition and synthesis in vivo of water-soluble proteins in the rat ocular lens: normal and cataractous.
    Cenedella RJ
    Exp Eye Res; 1979 Dec; 29(6):655-62. PubMed ID: 544282
    [No Abstract]   [Full Text] [Related]  

  • 43. Analysis of UVA-related alterations upon aging of eye lens proteins by mini two-dimensional polyacrylamide gel electrophoresis.
    Weinreb O; van Rijk FA; Steely HT; Dovrat A; Bloemendal H
    Ophthalmic Res; 2000; 32(5):195-204. PubMed ID: 10971180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses.
    Wada E; Sugiura T; Nakamura H; Tsumita T
    Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes of lens crystallins photosensitized with tryptophan metabolites.
    Ichijima H; Iwata S
    Ophthalmic Res; 1987; 19(3):157-63. PubMed ID: 3658326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Long-term maintenance of monkey lenses in organ culture: a potential model system for the study of human cataractogenesis.
    Kamiya T; Zigler JS
    Exp Eye Res; 1996 Oct; 63(4):425-31. PubMed ID: 8944549
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of digitalis-like compounds on rat lenses.
    Lichtstein D; Levy T; Deutsch J; Steinitz M; Zigler JS; Russell P
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):407-13. PubMed ID: 9950600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binding of β
    Hazen P; Trossi-Torres G; Khadka NK; Timsina R; Mainali L
    Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of sulfhydryl group in individual rat lens protein subunits during galactose cataract development.
    Pan S; Hua JC; Calvin HI; Fu SC
    Yan Ke Xue Bao; 1994 Mar; 10(1):21-6. PubMed ID: 7843379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium-induced opacification and loss of protein in the organ-cultured bovine lens.
    Marcantonio JM; Duncan G; Rink H
    Exp Eye Res; 1986 Jun; 42(6):617-30. PubMed ID: 3087764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation.
    Rao GN; Lardis MP; Cotlier E
    Biochem Biophys Res Commun; 1985 May; 128(3):1125-32. PubMed ID: 4004853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lens proteins in intumescent cataract.
    Ringens PJ; Bistervels B; Hoenders HJ; Wollensak J
    Ophthalmic Res; 1986; 18(2):61-7. PubMed ID: 3737113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromatofocusing for separation of human cataractous lens low molecular weight proteins.
    Kabasawa I; Watanabe M; Kimura M
    Jpn J Ophthalmol; 1983; 27(4):592-7. PubMed ID: 6668752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Analysis of proteins during recovery from lens opacity--analysis of selenite cataract model using Sprague-Dawley and Wistar rat].
    Matsushima H; Mukai K; Obara Y; Cai H; Ito Y; Ji C
    Nippon Ganka Gakkai Zasshi; 2000 Jun; 104(6):377-83. PubMed ID: 10885270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Human lens high-molecular-weight alpha-crystallin aggregates.
    Liang JJ; Akhtar NJ
    Biochem Biophys Res Commun; 2000 Aug; 275(2):354-9. PubMed ID: 10964670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY; Ho Y; Shaw TS; Chuang SA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Studies on human gamma-crystallins. I. Quantitative changes with age and cataract formation].
    Wu K; Li S; Pan S; Liang S; Cao X
    Yan Ke Xue Bao; 1992 Jun; 8(2):68-72. PubMed ID: 1299602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins.
    Ostrovsky MA; Sergeev YV; Atkinson DB; Soustov LV; Hejtmancik JF
    Mol Vis; 2002 Mar; 8():72-8. PubMed ID: 11951082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation.
    Liao JH; Lin IL; Huang KF; Kuo PT; Wu SH; Wu TH
    J Agric Food Chem; 2014 Jun; 62(25):5932-8. PubMed ID: 24932548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing cataractogenesis associated with mevalonic aciduria.
    Cenedella RJ; Sexton PS
    Curr Eye Res; 1998 Feb; 17(2):153-8. PubMed ID: 9523093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.