These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 12527724)

  • 1. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system.
    Margrie TW; Schaefer AT
    J Physiol; 2003 Jan; 546(Pt 2):363-74. PubMed ID: 12527724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of input patterns modulate the behavior of a model of olfactory bulb function.
    Künsting T; Spors H
    J Neurophysiol; 2009 Jul; 102(1):100-9. PubMed ID: 19357336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circuit properties generating gamma oscillations in a network model of the olfactory bulb.
    Bathellier B; Lagier S; Faure P; Lledo PM
    J Neurophysiol; 2006 Apr; 95(4):2678-91. PubMed ID: 16381804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells.
    Balu R; Larimer P; Strowbridge BW
    J Neurophysiol; 2004 Aug; 92(2):743-53. PubMed ID: 15277594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons.
    Desmaisons D; Vincent JD; Lledo PM
    J Neurosci; 1999 Dec; 19(24):10727-37. PubMed ID: 10594056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic clusters function as odor operators in the olfactory bulb.
    Migliore M; Cavarretta F; Marasco A; Tulumello E; Hines ML; Shepherd GM
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8499-504. PubMed ID: 26100895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interglomerular center-surround inhibition shapes odorant-evoked input to the mouse olfactory bulb in vivo.
    Vucinić D; Cohen LB; Kosmidis EK
    J Neurophysiol; 2006 Mar; 95(3):1881-7. PubMed ID: 16319205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine A
    Rotermund N; Winandy S; Fischer T; Schulz K; Fregin T; Alstedt N; Buchta M; Bartels J; Carlström M; Lohr C; Hirnet D
    J Physiol; 2018 Feb; 596(4):717-733. PubMed ID: 29274133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2003 May; 89(5):2601-10. PubMed ID: 12740407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarization-Activated Currents and Subthreshold Resonance in Granule Cells of the Olfactory Bulb.
    Hu R; Ferguson KA; Whiteus CB; Meijer DH; Araneda RC
    eNeuro; 2016; 3(5):. PubMed ID: 27844056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of odor stimulation on antidromic spikes in olfactory sensory neurons.
    Scott JW; Sherrill L
    J Neurophysiol; 2008 Dec; 100(6):3074-85. PubMed ID: 18842957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic action potentials connect distributed dendrodendritic microcircuits.
    Migliore M; Shepherd GM
    J Comput Neurosci; 2008 Apr; 24(2):207-21. PubMed ID: 17674173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics.
    Fourcaud-Trocmé N; Briffaud V; Thévenet M; Buonviso N; Amat C
    J Neurophysiol; 2018 Jan; 119(1):274-289. PubMed ID: 29021388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb.
    Kashiwadani H; Sasaki YF; Uchida N; Mori K
    J Neurophysiol; 1999 Oct; 82(4):1786-92. PubMed ID: 10515968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network.
    Nusser Z; Kay LM; Laurent G; Homanics GE; Mody I
    J Neurophysiol; 2001 Dec; 86(6):2823-33. PubMed ID: 11731539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice.
    Gschwend O; Beroud J; Carleton A
    PLoS One; 2012; 7(1):e30155. PubMed ID: 22272291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Granule cell excitability regulates gamma and beta oscillations in a model of the olfactory bulb dendrodendritic microcircuit.
    Osinski BL; Kay LM
    J Neurophysiol; 2016 Aug; 116(2):522-39. PubMed ID: 27121582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of intraglomerular circuits in shaping temporally structured responses to naturalistic inhalation-driven sensory input to the olfactory bulb.
    Carey RM; Sherwood WE; Shipley MT; Borisyuk A; Wachowiak M
    J Neurophysiol; 2015 May; 113(9):3112-29. PubMed ID: 25717156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discrimination among odorants by single neurons of the rat olfactory bulb.
    Wellis DP; Scott JW; Harrison TA
    J Neurophysiol; 1989 Jun; 61(6):1161-77. PubMed ID: 2746317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.