BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12529020)

  • 1. Neuroendocrine differentiation in carcinoma of the breast. Tyramide signal amplification discloses chromogranin A-positive tumour cells in more breast tumours than previously realized.
    Bofin AM; Qvigstad G; Waldum C; Waldum HL
    APMIS; 2002 Sep; 110(9):658-64. PubMed ID: 12529020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical analysis of pleomorphic lobular carcinoma: higher expression of p53 and chromogranin and lower expression of ER and PgR.
    Radhi JM
    Histopathology; 2000 Feb; 36(2):156-60. PubMed ID: 10672061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroendocrine differentiation in pure type mammary mucinous carcinoma is associated with favorable histologic and immunohistochemical parameters.
    Tse GM; Ma TK; Chu WC; Lam WW; Poon CS; Chan WC
    Mod Pathol; 2004 May; 17(5):568-72. PubMed ID: 15001999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oestrogen receptor negativity as a marker for high-grade ductal carcinoma in situ of the breast.
    Baqai T; Shousha S
    Histopathology; 2003 May; 42(5):440-7. PubMed ID: 12713620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of chromogranin A in human gastric adenocarcinomas using a sensitive immunohistochemical technique.
    Qvigstad G; Sandvik AK; Brenna E; Aase S; Waldum HL
    Histochem J; 2000 Sep; 32(9):551-6. PubMed ID: 11127976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ distribution of oncogene products and growth factor receptors in breast carcinoma: c-erbB-2 oncoprotein, EGFr, and PDGFr-beta-subunit.
    Kommoss F; Colley M; Hart CE; Franklin WA
    Mol Cell Probes; 1990 Feb; 4(1):11-23. PubMed ID: 1969111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of c-erbB3 protein in primary breast carcinomas.
    Naidu R; Yadav M; Nair S; Kutty MK
    Br J Cancer; 1998 Nov; 78(10):1385-90. PubMed ID: 9823984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroendocrine carcinomas of the breast.
    Rovera F; Masciocchi P; Coglitore A; La Rosa S; Dionigi G; Marelli M; Boni L; Dionigi R
    Int J Surg; 2008; 6 Suppl 1():S113-5. PubMed ID: 19167937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bcl2 expression and its correlation with neuroendocrine differentiation in colon carcinomas.
    Atasoy P; Bozdoğan O; Oztürk S; Ensari A
    Tumori; 2004; 90(2):233-8. PubMed ID: 15237588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroendocrine differentiation in bronchial carcinomas of classic squamous-cell type: an immunohistochemical study of 29 cases applying the tyramide signal amplification technique.
    Fresvig A; Qvigstad G; Halvorsen TB; Falkmer S; Waldum HL
    Appl Immunohistochem Mol Morphol; 2001 Mar; 9(1):9-13. PubMed ID: 11277422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of antibodies against estrogen and progesterone receptors to identify metastatic breast and ovarian carcinomas by conventional immunohistochemical and tyramide signal amplification methods.
    Kaufmann O; Köther S; Dietel M
    Mod Pathol; 1998 Apr; 11(4):357-63. PubMed ID: 9578086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of chromogranin A expression in serum and tissues of breast cancer patients.
    Giovanella L; Marelli M; Ceriani L; Giardina G; Garancini S; Colombo L
    Int J Biol Markers; 2001; 16(4):268-72. PubMed ID: 11820723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of cell cohesion in breast cytology as a characteristic of neuroendocrine carcinoma.
    Tang W; Taniguchi E; Wang X; Mori I; Kagiya T; Yang Q; Nakamura Y; Nakamura M; Yoshimura G; Sakurai T; Kakudo K
    Acta Cytol; 2002; 46(5):835-40. PubMed ID: 12365216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromogranin A and chromogranin B in noninvasive and invasive breast carcinoma.
    Kimura N; Yoshida R; Shiraishi S; Pilichowska M; Ohuchi N
    Endocr Pathol; 2002; 13(2):117-22. PubMed ID: 12165659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HER-2/neu testing in breast carcinoma: a combined immunohistochemical and fluorescence in situ hybridization approach.
    Ridolfi RL; Jamehdor MR; Arber JM
    Mod Pathol; 2000 Aug; 13(8):866-73. PubMed ID: 10955453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of E-cadherin in lobular and ductal neoplasms of the breast and its biologic and diagnostic implications.
    Acs G; Lawton TJ; Rebbeck TR; LiVolsi VA; Zhang PJ
    Am J Clin Pathol; 2001 Jan; 115(1):85-98. PubMed ID: 11190811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spindle cell carcinoma of breast with neuroendocrine differentiation].
    Ding HY; Gao LX
    Zhonghua Bing Li Xue Za Zhi; 2006 Jan; 35(1):13-7. PubMed ID: 16608642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of estrogen receptors, progesterone receptors and c-erbB2 oncogene protein expression in ductal carcinomas of the breast.
    Hussein MR; Abd-Elwahed SR; Abdulwahed AR
    Cell Biol Int; 2008 Jun; 32(6):698-707. PubMed ID: 18296077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and amplification of cyclin D1 in primary breast carcinomas: relationship with histopathological types and clinico-pathological parameters.
    Naidu R; Wahab NA; Yadav MM; Kutty MK
    Oncol Rep; 2002; 9(2):409-16. PubMed ID: 11836618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of P-cadherin, but not E-cadherin or N-cadherin, relates to pathological and functional differentiation of breast carcinomas.
    Kovács A; Dhillon J; Walker RA
    Mol Pathol; 2003 Dec; 56(6):318-22. PubMed ID: 14645693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.